Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 137097, 7 pages
http://dx.doi.org/10.1155/2015/137097
Review Article

Effect of Dietary ω-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer

1Tuscia University, Department of Ecological and Biological Sciences, (DEB), Largo dell’Università, 01100 Viterbo, Italy
2Complex Equipment Center, Tuscia University, Largo dell’Università, 01100 Viterbo, Italy

Received 23 September 2014; Accepted 15 January 2015

Academic Editor: Karsten Weylandt

Copyright © 2015 Laura Manzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Xin, W. Wei, and X. Li, “Effects of fish oil supplementation on cardiac function in chronic heart failure: a meta-analysis of randomised controlled trials,” Heart, vol. 98, no. 22, pp. 1620–1625, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Kar and R. Webel, “Fish oil supplementation & coronary artery disease: does it help?” Missouri medicine, vol. 109, no. 2, pp. 142–145, 2012. View at Google Scholar · View at Scopus
  3. E. A. Miles and P. C. Calder, “Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis,” British Journal of Nutrition, vol. 107, supplement 2, pp. S171–S184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Rudkowska, “Fish oils for cardiovascular disease: impact on diabetes,” Maturitas, vol. 67, no. 1, pp. 25–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Chapkin, W. Kim, J. R. Lupton, and D. N. McMurray, “Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 81, no. 2-3, pp. 187–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Calder, “Immunomodulation by omega-3 fatty acids,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 77, no. 5-6, pp. 327–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. V. C. Vaughan, M.-R. Hassing, and P. A. Lewandowski, “Marine polyunsaturated fatty acids and cancer therapy,” British Journal of Cancer, vol. 108, no. 3, pp. 486–492, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Cockbain, G. J. Toogood, and M. A. Hull, “Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer,” Gut, vol. 61, no. 1, pp. 135–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. F. C. Glatz and G. J. Van Der Vusse, “Cellular fatty acid-binding proteins: their function and physiological significance,” Progress in Lipid Research, vol. 35, no. 3, pp. 243–282, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Stillwell and S. R. Wassall, “Docosahexaenoic acid: membrane properties of a unique fatty acid,” Chemistry and Physics of Lipids, vol. 126, no. 1, pp. 1–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Tapiero, G. Nguyen Ba, P. Couvreur, and K. D. Tew, “Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies,” Biomedicine and Pharmacotherapy, vol. 56, no. 5, pp. 215–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Chamras, A. Ardashian, D. Heber, and J. A. Glaspy, “Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation,” Journal of Nutritional Biochemistry, vol. 13, no. 12, pp. 711–716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Serini, E. Piccioni, N. Merendino, and G. Calviello, “Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer,” Apoptosis, vol. 14, no. 2, pp. 135–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Spencer, C. Mann, M. Metcalfe et al., “The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential,” European Journal of Cancer, vol. 45, no. 12, pp. 2077–2086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. D'Eliseo, L. Manzi, N. Merendino, and F. Velotti, “Docosahexaenoic acid inhibits invasion of human RT112 urinary bladder and PT45 pancreatic carcinoma cells via down-modulation of granzyme B expression,” Journal of Nutritional Biochemistry, vol. 23, no. 5, pp. 452–457, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Horia and B. A. Watkins, “Complementary actions of docosahexaenoicacid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells,” Carcinogenesis, vol. 28, no. 4, pp. 809–815, 2007. View at Google Scholar
  17. N. Merendino, L. Costantini, L. Manzi, R. Molinari, D. D'Eliseo, and F. Velotti, “Dietary ω-3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer,” BioMed Research International, vol. 2013, Article ID 310186, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-Q. Chen and J. Russo, “Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells,” Biochimica et Biophysica Acta, vol. 1826, no. 2, pp. 370–384, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. A. D'Alessandro, G. M. D'Amici, A. M. Timperio, N. Merendino, and L. Zolla, “Docosohaexanoic acid-supplemented PACA44 cell lines and over-activation of Krebs cycle: an integrated proteomic, metabolomic and interactomic overview,” Journal of Proteomics, vol. 74, no. 10, pp. 2138–2158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Mouradian, K. D. Kikawa, B. P. Dranka, S. M. Komas, B. Kalyanaraman, and R. S. Pardini, “Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function,” Molecular Carcinogenesis, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Andrade-Vieira, J. H. Han, and P. A. Marignani, “Omega-3 polyunsaturated fatty acid promotes the inhibition of glycolytic enzymes and mTOR signaling by regulating the tumor suppressor LKB1,” Cancer Biology and Therapy, vol. 14, no. 11, pp. 1050–1058, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Warburg, “On respiratory impairment in cancer cells,” Science, vol. 124, no. 3215, pp. 269–270, 1956. View at Google Scholar · View at Scopus
  23. R. J. Shaw, “Glucose metabolism and cancer,” Current Opinion in Cell Biology, vol. 18, no. 6, pp. 598–608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Jadvar, A. Alavi, and S. S. Gambhir, “18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization,” Journal of Nuclear Medicine, vol. 50, no. 11, pp. 1820–1827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. V. R. Fantin, J. St-Pierre, and P. Leder, “Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance,” Cancer Cell, vol. 9, no. 6, pp. 425–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Weljie and F. R. Jirik, “Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 7, pp. 981–989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. G. V. Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Icard and H. Lincet, “A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells,” Biochimica et Biophysica Acta, vol. 1826, no. 2, pp. 423–433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Y. C. Choi, C. C. Collins, P. W. Gout, and Y. Wang, “Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?” Journal of Pathology, vol. 230, no. 4, pp. 350–355, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. P. R. Pandey, W. Liu, F. Xing, K. Fukuda, and K. Watabe, “Anti-cancer drugs targeting fatty acid synthase (FAS),” Recent Patents on Anti-Cancer Drug Discovery, vol. 7, no. 2, pp. 185–197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Deberardinis and T. Cheng, “Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer,” Oncogene, vol. 29, no. 3, pp. 313–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. J. Yeung, J. Pan, and M.-H. Lee, “Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer,” Cellular and Molecular Life Sciences, vol. 65, no. 24, pp. 3981–3999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J.-J. Briere, J. Favier, A.-P. Gimenez-Roqueplo, and P. Rustin, “Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation,” The American Journal of Physiology—Cell Physiology, vol. 291, no. 6, pp. C1114–C1120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. Levine and A. M. Puzio-Kuter, “The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes,” Science, vol. 330, no. 6009, pp. 1340–1344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Stubbs and J. R. Griffiths, “The altered metabolism of tumors: HIF-1 and its role in the Warburg effect,” Advances in Enzyme Regulation, vol. 50, no. 1, pp. 44–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Wittig and J. F. Coy, “The role of glucose metabolism and glucose-associated signalling in cancer,” Perspectives in Medicinal Chemistry, vol. 18, no. 1, pp. 64–82, 2008. View at Google Scholar
  38. K. Duvel, J. L. Yecies, S. Menon et al., “Activation of a metabolic gene regulatory network downstream of mTOR complex 1,” Science, vol. 39, no. 2, pp. 171–183, 2010. View at Google Scholar
  39. R. M. Young, D. Ackerman, Z. L. Quinn et al., “Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress,” Genes and Development, vol. 27, no. 10, pp. 1115–1131, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. S. G. Kennedy, A. J. Wagner, S. D. Conzen et al., “The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal,” Genes and Development, vol. 11, no. 6, pp. 701–713, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Laplante and D. M. Sabatini, “MTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. J. E. Thompson and C. B. Thompson, “Putting the rap on Akt,” Journal of Clinical Oncology, vol. 22, no. 20, pp. 4217–4226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Wang and K.-L. Guan, “AMP-activated protein kinase and cancer,” Acta Physiologica, vol. 196, no. 1, pp. 55–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. R. J. Shaw, N. Bardeesy, B. D. Manning et al., “The LKB1 tumor suppressor negatively regulates mTOR signaling,” Cancer Cell, vol. 6, no. 1, pp. 91–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. K. H. Vousden and C. Prives, “Blinded by the light: the growing complexity of p53,” Cell, vol. 137, no. 3, pp. 413–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. C. Calder, “Mechanisms of action of (n-3) fatty acids,” Journal of Nutrition, vol. 142, no. 3, pp. 592S–599S, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Ikemoto, M. Takahashi, N. Tsunoda, K. Maruyama, H. Itakura, and O. Ezaki, “High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils,” Metabolism: Clinical and Experimental, vol. 45, no. 12, pp. 1539–1546, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. C. H. S. Ruxton, S. C. Reed, M. J. A. Simpson, and K. J. Millington, “The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence,” Journal of Human Nutrition and Dietetics, vol. 17, no. 5, pp. 449–459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. D. B. Jump, S. D. Clarke, A. Thelen, and M. Liimatta, “Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids,” Journal of Lipid Research, vol. 35, no. 6, pp. 1076–1084, 1994. View at Google Scholar · View at Scopus
  50. R. Dentin, F. Benhamed, J.-P. Pégorier et al., “Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation,” Journal of Clinical Investigation, vol. 115, no. 10, pp. 2843–2854, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Flachs, O. Horakova, P. Brauner et al., “Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat,” Diabetologia, vol. 48, no. 11, pp. 2365–2375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. W. C. Stanley, R. J. Khairallah, and E. R. Dabkowski, “Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 15, no. 2, pp. 122–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. M. T. Suchorolski, T. G. Paulson, C. A. Sanchez, D. Hockenbery, and B. J. Reid, “Warburg and crabtree effects in premalignant barrett's esophagus cell lines with active mitochondria,” PLoS ONE, vol. 8, no. 2, Article ID e56884, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Miwa, M. Shikami, M. Goto et al., “Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose,” Oncology Reports, vol. 29, no. 5, pp. 2053–2057, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. S. D. Clarke, P. Thuillier, R. A. Baillie, and X. Sha, “Peroxisome proliferator-activated receptors: a family of lipid-activated transcription factors,” The American Journal of Clinical Nutrition, vol. 70, no. 4, pp. 566–571, 1999. View at Google Scholar · View at Scopus
  56. O. A. B. S. M. Gani, “Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists?” Cardiovascular Diabetology, vol. 7, article 6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Zhou, S. Zhang, J. Xue et al., “Activation of peroxisome proliferator-activated receptor α (PPARα) suppresses hypoxia-inducible factor-1α (HIF-1α) signaling in cancer cells,” Journal of Biological Chemistry, vol. 287, no. 42, pp. 35161–35169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. D. J. Stravopodis, L. H. Margaritis, and G. E. Voutsinas, “Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the HSP90 chaperone complex,” Current Medicinal Chemistry, vol. 14, no. 29, pp. 3122–3138, 2007. View at Publisher · View at Google Scholar · View at Scopus