Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 139580, 17 pages
http://dx.doi.org/10.1155/2015/139580
Research Article

Pan-Genome Analysis of Human Gastric Pathogen H. pylori: Comparative Genomics and Pathogenomics Approaches to Identify Regions Associated with Pathogenicity and Prediction of Potential Core Therapeutic Targets

1Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
2Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais (UFMG), 31907-270 Belo Horizonte, MG, Brazil
3Department of Bioinformatics, Mohammad Ali Jinnah University (MAJU), Sehala Road, Islamabad 44000, Pakistan
4KIMS, Khyber Medical University, Peshawar 25000, Pakistan
5Federal University of Pará, 66075-110 Belém, PA, Brazil
6Laboratory of Aquatic Animal Diseases (AQUAVET), Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, 31907-270 Belo Horizonte, MG, Brazil
7Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
8Centre for Biological Sequence Analysis (CBS), Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Received 3 February 2014; Revised 11 July 2014; Accepted 11 July 2014

Academic Editor: Angel Cataldi

Copyright © 2015 Amjad Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Lehours, F. F. Vale, M. K. Bjursell et al., “Genome sequencing reveals a phage in Helicobacter pylori,” mBio, vol. 2, no. 6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. You, L. He, M. Zhang et al., “Comparative genomics of helicobacter pylori strains of china associated with different clinical outcome,” PLoS ONE, vol. 7, no. 6, Article ID e38528, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. Q.-J. Dong, Q. Wang, Y. Xin, N. Li, and S.-Y. Xuan, “Comparative genomics of Helicobacter pylori,” World Journal of Gastroenterology, vol. 15, no. 32, pp. 3984–3991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Zhang, L. Moise, and S. F. Moss, “H. pylori vaccines: why we still don't have any,” Human Vaccines, vol. 7, no. 11, pp. 1153–1157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. P. Mikkonen, R. I. Kärenlampi, and M. Hänninen, “Phylogenetic analysis of gastric and enterohepatic Helicobacter species based on partial HSP60 gene sequences,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 3, pp. 753–758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Gressmann, B. Linz, R. Ghai et al., “Gain and loss of multiple genes during the evolution of Helicobacter pylori,” PLoS Genetics, vol. 1, no. 4, article e43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. R. Jones, J. M. Whitmire, and D. S. Merrell, “A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease,” Frontiers in Microbiology, vol. 1, Article ID Article 115, p. 115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Amieva, R. Vogetmann, A. Covacci, L. S. Tompkins, W. J. Nelson, and S. Falkow, “Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA,” Science, vol. 300, no. 5624, pp. 1430–1434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. T. G. Blanchard, S. J. Czinn, P. Correa et al., “Genome sequences of 65 Helicobacter pylori strains isolated from asymptomatic individuals and patients with gastric cancer, peptic ulcer disease, or gastritis,” Pathogens and Disease, vol. 68, pp. 39–43, 2013. View at Google Scholar
  10. N. R. Salama, G. Gonzalez-Valencia, B. Deatherage et al., “Genetic analysis of Helicobacter pylori strain populations colonizing the stomach at different times postinfection,” Journal of Bacteriology, vol. 189, no. 10, pp. 3834–3845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Salama, K. Guillemin, T. K. McDaniel, G. Sherlock, L. Tompkins, and S. Falkow, “A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14668–14673, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Zhang and Y. Lin, “DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes,” Nucleic Acids Research, vol. 37, no. 1, pp. D455–D458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Acencio and N. Lemke, “Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information,” BMC Bioinformatics, vol. 10, article 290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Friis, L. J. Jensen, and D. W. Ussery, “Visualization of pathogenicity regions in bacteria,” Genetica, vol. 108, no. 1, pp. 47–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Zanotti, “Molecular aspects of Helicobacter pylori cag-pathogenicity island,” The FEBS Journal, vol. 278, no. 8, p. 1189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Lagesen, P. Hallin, E. A. Rødland, H. Stærfeldt, T. Rognes, and D. W. Ussery, “RNAmmer: consistent and rapid annotation of ribosomal RNA genes,” Nucleic Acids Research, vol. 35, no. 9, pp. 3100–3108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Hyatt, P. F. Locascio, L. J. Hauser, and E. C. Uberbacher, “Gene and translation initiation site prediction in metagenomic sequences,” Bioinformatics, vol. 28, no. 17, Article ID bts429, pp. 2223–2230, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Ali, S. C. Soares, A. R. Santos et al., “Campylobacter fetus subspecies: Comparative genomics and prediction of potential virulence targets,” Gene, vol. 508, no. 2, pp. 145–156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  21. K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, “MEGA6: molecular evolutionary genetics analysis version 6.0,” Molecular Biology and Evolution, vol. 30, pp. 2725–2729, 2013. View at Google Scholar
  22. O. Lukjancenko, D. W. Ussery, and T. M. Wassenaar, “Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera,” Microbial Ecology, vol. 63, no. 3, pp. 651–673, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Leekitcharoenphon, O. Lukjancenko, C. Friis, F. M. Aarestrup, and D. W. Ussery, “Genomic variation in Salmonella enterica core genes for epidemiological typing,” BMC Genomics, vol. 13, no. 1, article 88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Trost, J. Blom, S. C. de Soares et al., “Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia,” Journal of Bacteriology, vol. 194, no. 12, pp. 3199–3215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Ali, S. C. Soares, E. Barbosa, A. R. Santos, D. Barh, and S. M. Bakhtiar, “Microbial comparative genomics: an overview of tools and insights into the genus corynebacterium,” Journal of Bacteriology & Parasitology, vol. 4, pp. 1–16, 2013. View at Google Scholar
  26. L. Snipen, T. Almøy, and D. W. Ussery, “Microbial comparative pan-genomics using binomial mixture models,” BMC Genomics, vol. 10, article 385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Butt, I. Nasrullah, S. Tahir, and Y. Tong, “Comparative genomics analysis of mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates,” PLoS ONE, vol. 7, no. 8, Article ID e43080, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. M. R. Wilkins, E. Gasteiger, A. Bairoch et al., “Protein identification and analysis tools in the ExPASy server,” Methods in Molecular Biology, vol. 112, pp. 531–552, 1999. View at Google Scholar · View at Scopus
  29. A. Conesa and S. Götz, “Blast2GO: a comprehensive suite for functional analysis in plant genomics,” International Journal of Plant Genomics, vol. 2008, Article ID 619832, 12 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Szklarczyk, A. Franceschini, M. Kuhn et al., “The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored,” Nucleic Acids Research, vol. 39, no. 1, pp. D561–D568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. El-Manzalawy, D. Dobbs, and V. Honavar, “Predicting flexible length linear B-cell epitopes.,” Computational systems bioinformatics / Life Sciences Society. Computational Systems Bioinformatics Conference, vol. 7, pp. 121–132, 2008. View at Google Scholar · View at Scopus
  32. I. A. Doytchinova and D. R. Flower, “VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines,” BMC Bioinformatics, vol. 8, article 4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. C. Soares, V. A. C. AbreuViní, R. T. J. Ramos et al., “PIPS: pathogenicity island prediction software,” PLoS ONE, vol. 7, no. 2, Article ID e30848, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Baar, M. Eppinger, G. Raddatz et al., “Complete genome sequence and analysis of Wolinella succinogenes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11690–11695, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. T. J. Carver, K. M. Rutherford, M. Berriman, M. Rajandream, B. G. Barrell, and J. Parkhill, “ACT: the Artemis comparison tool,” Bioinformatics, vol. 21, no. 16, pp. 3422–3423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. F. Tomb, O. White, A. R. Kerlavage et al., “The complete genome sequence of the gastric pathogen Helicobacter pylori,” Nature, vol. 388, pp. 539–547, 1997. View at Google Scholar
  37. M. Eppinger, C. Baar, B. Linz et al., “Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines,” PLoS Genetics, vol. 2, no. 7, p. e120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kutter, R. Buhrdorf, J. Haas, W. Schneider-Brachert, R. Haas, and W. Fischer, “Protein subassemblies of the Helicobacter pylori cag type IV secretion system revealed by localization and interaction studies,” Journal of Bacteriology, vol. 190, no. 6, pp. 2161–2171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. D. Oh, H. Kling-Bäckhed, M. Giannakis et al., “The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9999–10004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Lu, M. J. Wise, C. Y. Tay et al., “Comparative analysis of the full genome of Helicobacter pylori isolate Sahul64 identifies genes of high divergence,” Journal of Bacteriology, vol. 196, pp. 1073–1083, 2014. View at Google Scholar
  41. K. Tamura, M. Nei, and S. Kumar, “Prospects for inferring very large phylogenies by using the neighbor-joining method,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11030–11035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel, “New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0,” Systematic Biology, vol. 59, no. 3, pp. 307–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. L. Acencio and N. Lemke, “Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information,” BMC Bioinformatics, vol. 10, article 1471, p. 290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Giombini, M. Orsini, D. Carrabino, and A. Tramontano, “An automatic method for identifying surface proteins in bacteria: SLEP,” BMC Bioinformatics, vol. 11, article 39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Yu, C. Lin, and J. Hwang, “Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions,” Protein Science, vol. 13, no. 5, pp. 1402–1406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. J. L. Gardy, M. R. Laird, F. Chen et al., “PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis,” Bioinformatics, vol. 21, no. 5, pp. 617–623, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Du and Y. Luo, “Structure of a hexameric form of RadA recombinase from Methanococcus voltae,” Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol. 68, no. 5, pp. 511–516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Morita, S. Nakane, A. Shimada et al., “Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems,” Journal of Nucleic Acids, vol. 2010, Article ID 179594, 32 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Moldavski, O. Levin-Kravets, T. Ziv, Z. Adam, and G. Prag, “The hetero-hexameric nature of a chloroplast AAA+ FtsH protease contributes to its thermodynamic stability,” PLoS ONE, vol. 7, no. 4, Article ID e36008, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Beier, G. Spohn, R. Rappuoli, and V. Scarlato, “Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation,” Journal of Bacteriology, vol. 179, no. 15, pp. 4676–4683, 1997. View at Google Scholar · View at Scopus
  51. M. Kiran, A. Chauhan, R. Dziedzic et al., “Mycobacterium tuberculosis ftsH expression in response to stress and viability,” Tuberculosis, vol. 89, supplement 1, pp. S70–S73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. T. L. Cover, P. I. Hanson, and J. E. Heuser, “Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly,” Journal of Cell Biology, vol. 138, no. 4, pp. 759–769, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Kuck, B. Kolmerer, C. Iking-Konert, P. H. Krammer, W. Stremmel, and J. Rudi, “Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS,” Infection and Immunity, vol. 69, no. 8, pp. 5080–5087, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. S. L. Palframan, T. Kwok, and K. Gabriel, “Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis,” Frontiers in Cellular and Infection Microbiology, vol. 2, article 92, 2012. View at Google Scholar
  55. P. Mossey, A. Hudacek, and A. Das, “Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization,” Journal of Bacteriology, vol. 192, no. 11, pp. 2830–2838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Walldén, R. Williams, J. Yan et al., “Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 28, pp. 11348–11353, 2012. View at Publisher · View at Google Scholar · View at Scopus