Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 160979, 8 pages
http://dx.doi.org/10.1155/2015/160979
Research Article

Goal-Directed Resuscitation Aiming Cardiac Index Masks Residual Hypovolemia: An Animal Experiment

1Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Szeged, 6 Semmelweis Street, Szeged 6725, Hungary
2Institute of Surgical Research, University of Szeged, 6 Semmelweis Street, Szeged 6725, Hungary

Received 24 July 2015; Accepted 10 September 2015

Academic Editor: Mitja Lainscak

Copyright © 2015 Krisztián Tánczos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Shoemaker, P. L. Appel, and H. B. Kram, “Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients,” Chest, vol. 102, no. 1, pp. 208–215, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Cecconi, D. De Backer, M. Antonelli et al., “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European society of intensive care medicine,” Intensive Care Medicine, vol. 40, no. 12, pp. 1795–1815, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. W. C. Schoemaker, P. L. Appel, and H. B. Kram, “Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure,” Critical Care Medicine, vol. 16, no. 11, pp. 1117–1120, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Goodrich, “Endpoints of resuscitation: what should we be monitoring?” AACN Advanced Critical Care, vol. 17, no. 3, pp. 306–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Donati, P. Pelaia, P. Pietropaoli, and J. C. Preiser, “Do use ScvO2 and O2ERe as therapeutical goals,” Minerva Anestesiologica, vol. 77, no. 5, pp. 483–484, 2011. View at Google Scholar · View at Scopus
  6. P. E. Marik and H. Desai, “Goal directed fluid therapy,” Current Pharmaceutical Design, vol. 18, no. 38, pp. 6215–6224, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. P. E. Marik, M. Baram, and B. Vahid, “Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares,” Chest, vol. 134, no. 1, pp. 172–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Michard and J.-L. Teboul, “Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence,” Chest, vol. 121, no. 6, pp. 2000–2008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Németh, K. Tánczos, G. Demeter et al., “Central venous oxygen saturation and carbon dioxide gap as resuscitation targets in a hemorrhagic shock,” Acta Anaesthesiologica Scandinavica, vol. 58, no. 5, pp. 611–619, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. P. E. Marik, R. Cavallazzi, T. Vasu, and A. Hirani, “Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature,” Critical Care Medicine, vol. 37, no. 9, pp. 2642–2647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. E. Marik, X. Monnet, and J.-L. Teboul, “Hemodynamic parameters to guide fluid therapy,” Annals of Intensive Care, vol. 1, article 1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. E. Marik, “Iatrogenic salt water drowning and the hazards of a high central venous pressure,” Annals of Intensive Care, vol. 4, article 21, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Prowle, J. E. Echeverri, E. V. Ligabo, C. Ronco, and R. Bellomo, “Fluid balance and acute kidney injury,” Nature Reviews Nephrology, vol. 6, no. 2, pp. 107–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Cannesson, G. Pestel, C. Ricks, A. Hoeft, and A. Perel, “Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists,” Critical Care, vol. 15, no. 4, article R197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Cecconi, C. Hofer, J.-L. Teboul et al., “Fluid challenges in intensive care: the FENICE study: a global inception cohort study,” Intensive Care Medicine, vol. 41, no. 9, pp. 1529–1537, 2015. View at Publisher · View at Google Scholar
  16. L. H. Navarro, J. A. Bloomstone, J. O. Auler et al., “Perioperative fluid therapy: a statement from the international Fluid Optimization Group,” Perioperative Medicine, vol. 4, article 3, 2015. View at Publisher · View at Google Scholar
  17. S. Finfer, R. Bellomo, N. Boyce, J. French, J. Myburgh, and R. Norton, “A comparison of albumin and saline for fluid resuscitation in the intensive care unit,” The New England Journal of Medicine, vol. 350, no. 22, pp. 2247–2256, 2004. View at Google Scholar
  18. F. M. Brunkhorst, C. Engel, F. Bloos et al., “Intensive insulin therapy and pentastarch resuscitation in severe sepsis,” The New England Journal of Medicine, vol. 358, no. 2, pp. 125–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Perner, N. Haase, A. B. Guttormsen et al., “Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis,” The New England Journal of Medicine, vol. 367, no. 2, pp. 124–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Myburgh, Q. Li, S. Heritier, A. Dan, P. Glass, and Crystalloid versus Hydroxyethyl Starch Trial (CHEST) Management Committee, “Statistical analysis plan for the Crystalloid versus Hydroxyethyl Starch Trial (CHEST),” Critical Care and Resuscitation, vol. 14, no. 1, pp. 44–52, 2012. View at Google Scholar · View at Scopus
  21. J. D. Sandham, R. D. Hull, R. F. Brant et al., “A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients,” The New England Journal of Medicine, vol. 348, no. 1, pp. 5–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. P. M. Kapoor, M. Kakani, U. Chowdhury, M. Choudhury, Lakshmy, and U. Kiran, “Early goal-directed therapy in moderate to high-risk cardiac surgery patients,” Annals of Cardiac Anaesthesia, vol. 11, no. 1, pp. 27–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. J. Van der Linden, A. Dierick, S. Wilmin, B. Bellens, and S. G. De Hert, “A randomized controlled trial comparing an intraoperative goal-directed strategy with routine clinical practice in patients undergoing peripheral arterial surgery,” European Journal of Anaesthesiology, vol. 27, no. 9, pp. 788–793, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Feldheiser, P. Conroy, T. Bonomo, B. Cox, T. R. Garces, and C. Spies, “Development and feasibility study of an algorithm for intraoperative goaldirected haemodynamic management in noncardiac surgery,” The Journal of International Medical Research, vol. 40, no. 4, pp. 1227–1241, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Benes, I. Chytra, P. Altmann et al., “Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study,” Critical Care, vol. 14, no. 3, article R118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Cecconi, N. Fasano, N. Langiano et al., “Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia,” Critical Care, vol. 15, no. 3, article R132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Michard and J.-L. Teboul, “Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation,” Critical Care, vol. 4, no. 5, pp. 282–289, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. F. Linton, N. W. F. Linton, and F. Kelly, “Is clinical assessment of the circulation reliable in postoperative cardiac surgical patients?” Journal of Cardiothoracic and Vascular Anesthesia, vol. 16, no. 1, pp. 4–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Reinhart, H.-J. Kuhn, C. Hartog, and D. L. Bredle, “Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill,” Intensive Care Medicine, vol. 30, no. 8, pp. 1572–1578, 2004. View at Google Scholar · View at Scopus
  30. M. S. Goepfert, H. P. Richter, C. Z. Eulenburg et al., “Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial,” Anesthesiology, vol. 119, no. 4, pp. 824–836, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Mikor, D. Trásy, M. F. Németh et al., “Continuous central venous oxygen saturation assisted intraoperative hemodynamic management during major abdominal surgery: a randomized, controlled trial,” BMC Anesthesiology, vol. 15, article 82, 2015. View at Publisher · View at Google Scholar
  32. S. Kocsi, G. Demeter, J. Fogas, D. Érces, J. Kaszaki, and Z. Molnár, “Central venous oxygen saturation is a good indicator of altered oxygen balance in isovolemic anemia,” Acta Anaesthesiologica Scandinavica, vol. 56, no. 3, pp. 291–297, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Kocsi, G. Demeter, D. Erces, E. Nagy, J. Kaszaki, and Z. Molnar, “Central venous-to-arterial CO2 gap is a useful parameter in monitoring hypovolemia-caused altered oxygen balance: animal study,” Critical Care Research and Practice, vol. 2013, Article ID 583598, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal—a yet unfinished puzzle,” Critical Care, vol. 15, no. 5, article 232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C. E. Mecher, E. C. Rackow, M. E. Astiz, and M. H. Weil, “Venous hypercarbia associated with severe sepsis and systemic hypoperfusion,” Critical Care Medicine, vol. 18, no. 6, pp. 585–589, 1990. View at Publisher · View at Google Scholar · View at Scopus
  36. M. H. Weil, E. C. Rackow, R. Trevino, W. Grundler, J. L. Falk, and M. I. Griffel, “Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation,” The New England Journal of Medicine, vol. 315, no. 3, pp. 153–156, 1986. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Cuschieri, E. P. Rivers, M. W. Donnino et al., “Central venous-arterial carbon dioxide difference as an indicator of cardiac index,” Intensive Care Medicine, vol. 31, no. 6, pp. 818–822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Benjamin, T. A. Paluch, S. R. Berger, G. Premus, C. Wu, and T. J. Iberti, “Venous hypercarbia in canine hemorrhagic shock,” Critical Care Medicine, vol. 15, no. 5, pp. 516–518, 1987. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Lamia, X. Monnet, and J. L. Teboul, “Meaning of arterio-venous PCO2 difference in circulatory shock,” Minerva Anestesiologica, vol. 72, no. 6, pp. 597–604, 2006. View at Google Scholar · View at Scopus
  40. R. P. Dellinger, M. M. Levy, A. Rhodes et al., “Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012,” Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Tánczos, M. Németh, and Z. Molnár, “The multimodal concept of hemodynamic stabilization,” Frontiers in Public Health, vol. 2, article 34, 2014. View at Publisher · View at Google Scholar