Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 182418, 7 pages
http://dx.doi.org/10.1155/2015/182418
Research Article

Evaluation of APP695 Transgenic Mice Bone Marrow Mesenchymal Stem Cells Neural Differentiation for Transplantation

1Department of Neurology, The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
2Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
3Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China

Received 4 December 2014; Accepted 16 March 2015

Academic Editor: Hari Shanker Sharma

Copyright © 2015 Qian Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Mattson, “Pathways towards and away from Alzheimer's disease,” Nature, vol. 430, no. 7000, pp. 631–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R.-W. Shin, K. Ogino, A. Shimabuku et al., “Amyloid precursor protein cytoplasmic domain with phospho-Thr668 accumulates in Alzheimer's disease and its transgenic models: a role to mediate interaction of Aβ and tau,” Acta Neuropathologica, vol. 113, no. 6, pp. 627–636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem cells: revisiting history, concepts, and assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. C. Lie, H. Song, S. A. Colamarino, G.-L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annual Review of Pharmacology and Toxicology, vol. 44, pp. 399–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. von Rotz, B. M. Kohli, J. Bosset et al., “The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor,” Journal of Cell Science, vol. 117, no. 19, pp. 4435–4448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. K. Freude, M. Penjwini, J. L. Davis, F. M. LaFerla, and M. Blurton-Jones, “Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells,” The Journal of Biological Chemistry, vol. 286, no. 27, pp. 24264–24274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Chasseigneaux and B. Allinquant, “Functions of Aβ, sAPPα and sAPPβ: similarities and differences,” Journal of Neurochemistry, vol. 120, no. 1, pp. 99–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. Lathia, M. P. Mattson, and A. Cheng, “Notch: from neural development to neurological disorders,” Journal of Neurochemistry, vol. 107, no. 6, pp. 1471–1481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. F. Fischer, R. van Dijk, J. A. Sluijs et al., “Activation of the Notch pathway in Down syndrome: cross-talk of Notch and APP,” The FASEB Journal, vol. 19, no. 11, pp. 1451–1458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Levine and D. J. Klionsky, “Development by self-digestion: molecular mechanisms and biological functions of autophagy,” Developmental Cell, vol. 6, no. 4, pp. 463–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. H. Yu, A. Kumar, C. Peterhoff et al., “Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for β-amyloid peptide over-production and localization in Alzheimer's disease,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 12, pp. 2531–2540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. R. A. Nixon, “Autophagy, amyloidogenesis and Alzheimer disease,” Journal of Cell Science, vol. 120, no. 23, pp. 4081–4091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. J. Justice and Y. N. Jan, “Variations on the Notch pathway in neural development,” Current Opinion in Neurobiology, vol. 12, no. 1, pp. 64–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Mizushima and T. Yoshimori, “How to interpret LC3 immunoblotting,” Autophagy, vol. 3, no. 6, pp. 542–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. C. Lu, S. Rabizadeh, S. Chandra et al., “A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor,” Nature Medicine, vol. 6, no. 4, pp. 397–404, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. López-Toledano and M. L. Shelanski, “Neurogenic effect of ββ-amyloid peptide in the development of neural stem cells,” Journal of Neuroscience, vol. 24, no. 23, pp. 5439–5444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Chen and C. Dong, “Aβ40 promotes neuronal cell fate in neural progenitor cells,” Cell Death and Differentiation, vol. 16, no. 3, pp. 386–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. K. Freude, M. Penjwini, J. L. Davis, F. M. LaFerla, and M. Blurton-Jones, “Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells,” Journal of Biological Chemistry, vol. 286, no. 27, pp. 24264–24274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sotthibundhu, Q.-X. Li, W. Thangnipon, and E. J. Coulson, “Aβ1-42 stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor,” Neurobiology of Aging, vol. 30, no. 12, pp. 1975–1985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Roncarati, N. Šestan, M. H. Scheinfeld et al., “The γ-secretase-generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 7102–7107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Y. Kim, J. S. Mo, E. J. Ann et al., “Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk,” Journal of Cell Science, vol. 124, no. 11, pp. 1831–1843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. Bray, “Notch signalling: a simple pathway becomes complex,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 678–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Ohishi, B. Varnum-Finney, D. Flowers, C. Anasetti, D. Myerson, and I. D. Bernstein, “Monocytes express high amounts of Notch and undergo cytokine specific apoptosis following interaction with the Notch ligand, delta-1,” Blood, vol. 95, no. 9, pp. 2847–2854, 2000. View at Google Scholar · View at Scopus
  24. T. Ohtsuka, M. Sakamoto, F. Guillemot, and R. Kageyama, “Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain,” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 30467–30474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. T. J. Pierfelice, K. C. Schreck, C. G. Eberhart, and N. Gaiano, “Notch, neural stem cells, and brain tumors,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 367–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Imayoshi, M. Sakamoto, M. Yamaguchi, K. Mori, and R. Kageyama, “Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains,” Journal of Neuroscience, vol. 30, no. 9, pp. 3489–3498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Jing, Y. Jia, J. Lu et al., “MicroRNA-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by Notch signaling,” NeuroReport, vol. 22, no. 5, pp. 206–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Lee, “Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival?” Experimental Neurobiology, vol. 21, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar
  29. H. Harris and D. C. Rubinsztein, “Control of autophagy as a therapy for neurodegenerative disease,” Nature Reviews Neurology, vol. 8, no. 2, pp. 108–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Nixon, J. Wegiel, A. Kumar et al., “Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 2, pp. 113–122, 2005. View at Google Scholar · View at Scopus
  31. B. Boland, A. Kumar, S. Lee et al., “Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease,” Journal of Neuroscience, vol. 28, no. 27, pp. 6926–6937, 2008. View at Publisher · View at Google Scholar · View at Scopus