Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 189638, 10 pages
http://dx.doi.org/10.1155/2015/189638
Research Article

CCL27: Novel Cytokine with Potential Role in Pathogenesis of Multiple Sclerosis

1Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420008, Russia
2Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
3WP Institute, Reno, NV 89557, USA
4Kazan State Medical University, 49 Butlerova Street, Kazan, Tatarstan 420012, Russia
5Excellence Cluster Cardio-Pulmonary System, Justus Liebig University, Aulweg 130, 35392 Giessen, Germany

Received 7 November 2014; Accepted 11 December 2014

Academic Editor: András Palotás

Copyright © 2015 Svetlana F. Khaiboullina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Confavreux and S. Vukusic, “Age at disability milestones in multiple sclerosis,” Brain, vol. 129, part 3, pp. 595–605, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Compston and A. Coles, “Multiple sclerosis,” The Lancet, vol. 372, no. 9648, pp. 1502–1517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Noseworthy, “Progress in determining the causes and treatment of multiple sclerosis,” Nature, vol. 399, pp. A40–A47, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. L. K. Fisniku, P. A. Brex, D. R. Altmann et al., “Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis,” Brain, vol. 131, no. 3, pp. 808–817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. D. Trapp and K. A. Nave, “Multiple sclerosis: an immune or neurodegenerative disorder?” Annual Review of Neuroscience, vol. 31, pp. 247–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Koch, E. Kingwell, P. Rieckmann, and H. Tremlett, “The natural history of primary progressive multiple sclerosis,” Neurology, vol. 73, no. 23, pp. 1996–2002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Khaleeli, O. Ciccatelli, F. Manfredonia et al., “Predicting progression in primary progressive multiple sclerosis: a 10-year multicenter study,” Annals of Neurology, vol. 63, no. 6, pp. 790–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. L. Weiner, “Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease,” Archives of Neurology, vol. 61, no. 10, pp. 1613–1615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Kirk, J. Plumb, M. Mirakhur, and S. McQuaid, “Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination,” Journal of Pathology, vol. 201, no. 2, pp. 319–327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. McQuaid, P. Cunnea, J. McMahon, and U. Fitzgerald, “The effects of blood-brain barrier disruption on glial cell function in multiple sclerosis,” Biochemical Society Transactions, vol. 37, part 1, pp. 329–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Plumb, S. McQuaid, M. Mirakhur, and J. Kirk, “Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis,” Brain Pathology, vol. 12, no. 2, pp. 154–169, 2002. View at Google Scholar · View at Scopus
  12. H. Kebir, K. Kreymborg, I. Ifergan et al., “Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation,” Nature Medicine, vol. 13, no. 10, pp. 1173–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Cuzner, D. Gveric, C. Strand et al., “The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 12, pp. 1194–1204, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. G. M. Liuzzi, T. Latronico, A. Fasano, G. Carlone, and P. Riccio, “Interferon-beta inhibits the expression of metalloproteinases in rat glial cell cultures: implications for multiple sclerosis pathogenesis and treatment,” Multiple Sclerosis, vol. 10, no. 3, pp. 290–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Leppert, J. Ford, G. Stabler et al., “Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis,” Brain, vol. 121, no. 12, pp. 2327–2334, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Olsson, W. W. Zhi, B. Hojeberg et al., “Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-γ,” The Journal of Clinical Investigation, vol. 86, no. 3, pp. 981–985, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-B. Sun, T. Olsson, W.-Z. Wang et al., “Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls,” European Journal of Immunology, vol. 21, no. 6, pp. 1461–1468, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. R. R. Voskuhl, R. Martin, C. Bergman, M. Dalal, N. H. Ruddle, and H. F. McFarland, “T helper 1 (Th1) functional phenotype of human myelin basic protein-specific T lymphocytes,” Autoimmunity, vol. 15, no. 2, pp. 137–143, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Brucklacher-Waldert, K. Stuerner, M. Kolster, J. Wolthausen, and E. Tolosa, “Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis,” Brain, vol. 132, no. 12, pp. 3329–3341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Kebir, I. Ifergan, J. I. Alvarez et al., “Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis,” Annals of Neurology, vol. 66, no. 3, pp. 390–402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Imam, M. K. Guyton, A. Haque et al., “Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients,” Journal of Neuroimmunology, vol. 190, no. 1-2, pp. 139–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. G. Ando, J. Clayton, D. Kono, J. L. Urban, and E. E. Sercarz, “Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype,” Cellular Immunology, vol. 124, no. 1, pp. 132–143, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. H. S. Panitch, R. L. Hirsch, J. Schindler, and K. P. Johnson, “Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system,” Neurology, vol. 37, no. 7, pp. 1097–1102, 1987. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Panitch, R. L. Hirsch, A. S. Haley, and K. P. Johnson, “Exacerbations of multiple sclerosis in patients treated with gamma interferon,” The Lancet, vol. 1, no. 8538, pp. 893–894, 1987. View at Google Scholar · View at Scopus
  25. C. Lock, G. Hermans, R. Pedotti et al., “Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis,” Nature Medicine, vol. 8, no. 5, pp. 500–508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Matusevicius, P. Kivisäkk, B. He et al., “Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis,” Multiple Sclerosis, vol. 5, no. 2, pp. 101–104, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Aggarwal, N. Ghilardi, M.-H. Xie, F. J. de Sauvage, and A. L. Gurney, “Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1910–1914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Jadidi-Niaragh and A. Mirshafiey, “Th17 cell, the new player of neuroinflammatory process in multiple sclerosis,” Scandinavian Journal of Immunology, vol. 74, no. 1, pp. 1–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Rostami and B. Ciric, “Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination,” Journal of the Neurological Sciences, vol. 333, no. 1-2, pp. 76–87, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. C. H. Polman, S. C. Reingold, B. Banwell et al., “Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria,” Annals of Neurology, vol. 69, no. 2, pp. 292–302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Morales, B. Homey, A. P. Vicari et al., “CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 25, pp. 14470–14475, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Yen, J. Cheung, H. Scheerens et al., “IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1310–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Strober, I. J. Fuss, and R. S. Blumberg, “The immunology of mucosal models of inflammation,” Annual Review of Immunology, vol. 20, pp. 495–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Oppmann, R. Lesley, B. Blom et al., “Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12,” Immunity, vol. 13, no. 5, pp. 715–725, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Parham, M. Chirica, J. Timans et al., “A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R,” Journal of Immunology, vol. 168, no. 11, pp. 5699–5708, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. G.-X. Zhang, B. Gran, S. Yu et al., “Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-β2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system,” The Journal of Immunology, vol. 170, no. 4, pp. 2153–2160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Becher, B. G. Durell, and R. J. Noelle, “Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12,” Journal of Clinical Investigation, vol. 110, no. 4, pp. 493–497, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. J. Cua, J. Sherlock, Y. Chen et al., “Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain,” Nature, vol. 421, no. 6924, pp. 744–748, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Reiss, A. E. Proudfoot, C. A. Power, J. J. Campbell, and E. C. Butcher, “CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin,” Journal of Experimental Medicine, vol. 194, no. 10, pp. 1541–1547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. K. A. Kraynyak, M. A. Kutzler, N. J. Cisper et al., “Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques,” Vaccine, vol. 28, no. 8, pp. 1942–1951, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Gunsolly, J. D. Nicholson, S. J. Listwak et al., “Expression and regulation in the brain of the chemokine CCL27 gene locus,” Journal of Neuroimmunology, vol. 225, no. 1-2, pp. 82–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. E. Dorf, M. A. Berman, S. Tanabe, M. Heesen, and Y. Luo, “Astrocytes express functional chemokine receptors,” Journal of Neuroimmunology, vol. 111, no. 1-2, pp. 109–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Cartier, O. Hartley, M. Dubois-Dauphin, and K.-H. Krause, “Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases,” Brain Research Reviews, vol. 48, no. 1, pp. 16–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Homey, H. Alenius, A. Müller et al., “CCL27-CCR10 interactions regulate T cell-mediated skin inflammation,” Nature Medicine, vol. 8, no. 2, pp. 157–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Almolda, M. Costa, M. Montoya, B. González, and B. Castellano, “Increase in th17 and t-reg lymphocytes and decrease of il22 correlate with the recovery phase of acute eae in rat,” PLoS ONE, vol. 6, no. 11, Article ID e27473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Li, M. Yu, H. Li, H. Zhang, and Y. Jiang, “IL-17 and IL-22 in cerebrospinal fluid and plasma are elevated in Guillain-Barré syndrome,” Mediators of Inflammation, vol. 2012, Article ID 260473, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Chung, X. Yang, S. H. Chang, L. Ma, Q. Tian, and C. Dong, “Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes,” Cell Research, vol. 16, no. 11, pp. 902–907, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Wolk, S. Kunz, E. Witte, M. Friedrich, K. Asadullah, and R. Sabat, “IL-22 increases the innate immunity of tissues,” Immunity, vol. 21, no. 2, pp. 241–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Shalom-Barak, J. Quach, and M. Lotz, “Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB,” Journal of Biological Chemistry, vol. 273, no. 42, pp. 27467–27473, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Fossiez, O. Djossou, P. Chomarat et al., “T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines,” The Journal of Experimental Medicine, vol. 183, no. 6, pp. 2593–2603, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Ishigame, S. Kakuta, T. Nagai et al., “Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses,” Immunity, vol. 30, no. 1, pp. 108–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Chen, S.-X. Lin, R. Agha-Majzoub, L. Overbergh, C. Mathieu, and L. S. Chan, “CCL27 is a critical factor for the development of atopic dermatitis in the keratin-14 IL-4 transgenic mouse model,” International Immunology, vol. 18, no. 8, pp. 1233–1242, 2006. View at Publisher · View at Google Scholar · View at Scopus