Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 193741, 7 pages
http://dx.doi.org/10.1155/2015/193741
Review Article

Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training

1Center for Biomechanic and Motor Control (BMC), Department of Physical Education and Sport Science, University of Bojnord, Bojnord, Iran
2Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, 37075 Göttingen, Germany
3Pain Clinic, Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen, 37075 Göttingen, Germany

Received 17 November 2014; Revised 13 January 2015; Accepted 9 February 2015

Academic Editor: Chandramouli Krishnan

Copyright © 2015 Nosratollah Hedayatpour and Deborah Falla. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Aronson, M. A. Violan, S. D. Dufresne, D. Zangen, R. A. Fielding, and L. J. Goodyear, “Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle,” Journal of Clinical Investigation, vol. 99, no. 6, pp. 1251–1257, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Smith and O. M. Rutherford, “The role of metabolites in strength training. I. A comparison of eccentric and concentric contractions,” European Journal of Applied Physiology and Occupational Physiology, vol. 71, no. 4, pp. 332–336, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Duclay, A. Martin, A. Robbe, and M. Pousson, “Spinal reflex plasticity during maximal dynamic contractions after eccentric training,” Medicine & Science in Sports & Exercise, vol. 40, no. 4, pp. 722–734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Hedayatpour, D. Falla, L. Arendt-Nielsen, C. Vila-Chã, and D. Farina, “Motor unit conduction velocity during sustained contraction after eccentric exercise,” Medicine and Science in Sports and Exercise, vol. 41, no. 10, pp. 1927–1933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Hedayatpour, D. Falla, L. Arendt-Nielsen, and D. Farina, “Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing isometric contraction,” Scandinavian Journal of Medicine and Science in Sports, vol. 20, no. 1, pp. 145–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Fry, “The role of resistance exercise intensity on muscle fibre adaptations,” Sports Medicine, vol. 34, no. 10, pp. 663–679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. B. J. Schoenfeld, “The mechanisms of muscle hypertrophy and their application to resistance training,” Journal of Strength & Conditioning Research, vol. 24, no. 10, pp. 2857–2872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. A. Hornberger and S. Chien, “Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle,” Journal of Cellular Biochemistry, vol. 97, no. 6, pp. 1207–1216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. H. H. Vandenburgh, “Motion into mass: how does tension stimulate muscle growth?” Medicine & Science in Sports & Exercise, vol. 19, no. 5, supplement, pp. S142–S149, 1987. View at Google Scholar · View at Scopus
  10. V. G. Coffey and J. A. Hawley, “The molecular bases of training adaptation,” Sports Medicine, vol. 37, no. 9, pp. 737–763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Hedayatpour, D. Falla, L. Arendt-Nielsen, and D. Farina, “Sensory and electromyographic mapping during delayed-onset muscle soreness,” Medicine and Science in Sports and Exercise, vol. 40, no. 2, pp. 326–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. A. Butterfield and W. Herzog, “The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise,” Pflugers Archiv European Journal of Physiology, vol. 451, no. 5, pp. 688–700, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. V. Narici, G. S. Roi, L. Landoni, A. E. Minetti, and P. Cerretelli, “Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps,” European Journal of Applied Physiology and Occupational Physiology, vol. 59, no. 4, pp. 310–319, 1989. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Lynn and D. L. Morgan, “Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running,” Journal of Applied Physiology, vol. 77, no. 3, pp. 1439–1444, 1994. View at Google Scholar · View at Scopus
  15. P. Aagaard, J. L. Andersen, P. Dyhre-Poulsen et al., “A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture,” The Journal of Physiology, vol. 534, no. 2, pp. 613–623, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Hortobágyi, L. Dempsey, D. Fraser et al., “Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans,” The Journal of Physiology, vol. 524, no. 1, pp. 293–304, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Hortobágyi, J. P. Hill, J. A. Houmard, D. D. Fraser, N. J. Lambert, and R. G. Israel, “Adaptive responses to muscle lengthening and shortening in humans,” Journal of Applied Physiology, vol. 80, no. 3, pp. 765–772, 1996. View at Google Scholar · View at Scopus
  18. P. M. Walker, F. Brunotte, I. Rouhier-Marcer et al., “Nuclear magnetic resonance evidence of different muscular adaptations after resistance training,” Archives of Physical Medicine and Rehabilitation, vol. 79, no. 11, pp. 1391–1398, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Goldspink, “Gene expression in skeletal muscle,” Biochemical Society Transactions, vol. 30, no. 2, pp. 285–290, 2002. View at Google Scholar · View at Scopus
  20. T. A. Hornberger and S. Chien, “Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle,” The Journal of Cellular Biochemistry, vol. 97, no. 6, pp. 1207–1216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. W. Chen, G. A. Nader, K. R. Baar, M. J. Fedele, E. P. Hoffman, and K. A. Esser, “Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling,” Journal of Physiology, vol. 545, no. 1, pp. 27–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. T. A. McBride, B. W. Stockert, F. A. Gorin, and R. C. Carlsen, “Stretch-activated ion channels contribute to membrane depolarization after eccentric contractions,” Journal of Applied Physiology, vol. 88, no. 1, pp. 91–101, 2000. View at Google Scholar · View at Scopus
  23. S. F. Preston and R. D. Berlin, “An intracellular calcium store regulates protein synthesis in HeLa cells, but it is not the hormone-sensitive store,” Cell Calcium, vol. 13, no. 5, pp. 303–312, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Labeit, B. Kolmerer, and W. A. Linke, “The giant protein titin: emerging roles in physiology and pathophysiology,” Circulation Research, vol. 80, no. 2, pp. 290–294, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Tskhovrebova and J. Trinick, “Giant proteins: sensing tension with titin kinase,” Current Biology, vol. 18, no. 24, pp. R1141–R1142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. F. Kramer and L. J. Goodyear, “Exercise, MAPK, and NF-κB signaling in skeletal muscle,” Journal of Applied Physiology, vol. 103, no. 1, pp. 388–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. P. Roux and J. Blenis, “ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions,” Microbiology and Molecular Biology Reviews, vol. 68, no. 2, pp. 320–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Hameed, K. H. W. Lange, J. L. Andersen et al., “The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men,” Journal of Physiology, vol. 555, no. 1, pp. 231–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Brahm, K. Piehl-Aulin, B. Saltin, and S. Ljunghall, “Net fluxes over working thigh of hormones, growth factors and biomarkers of bone metabolism during short lasting dynamic exercise,” Calcified Tissue International, vol. 60, no. 2, pp. 175–180, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Yang, M. Alnaqeeb, H. Simpson, and G. Goldspink, “Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch,” Journal of Muscle Research and Cell Motility, vol. 17, no. 4, pp. 487–495, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Y. Yang and G. Goldspink, “Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation,” FEBS Letters, vol. 522, no. 1–3, pp. 156–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Hill and G. Goldspink, “Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage,” The Journal of Physiology, vol. 549, no. 2, pp. 409–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Buresh, K. Berg, and J. French, “The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training,” Journal of Strength and Conditioning Research, vol. 23, no. 1, pp. 62–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Crewther, J. Keogh, J. Cronin, and C. Cook, “Possible stimuli for strength and power adaptation: acute hormonal responses,” Sports Medicine, vol. 36, no. 3, pp. 215–238, 2006. View at Google Scholar
  35. M. M. Bamman, J. R. Shipp, J. Jiang et al., “Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans,” American Journal of Physiology: Endocrinology and Metabolism, vol. 280, no. 3, pp. E383–E390, 2001. View at Google Scholar · View at Scopus
  36. V. A. Bricout, P. S. Germain, B. D. Serrurier, and C. Y. Guezennec, “Changes in testosterone muscle receptors: effects of an androgen treatment on physically trained rats,” Cellular and Molecular Biology, vol. 40, no. 3, pp. 291–294, 1994. View at Google Scholar · View at Scopus
  37. J. P. Ahtiainen, A. Pakarinen, M. Alen, W. J. Kraemer, and K. Häkkinen, “Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men,” European Journal of Applied Physiology, vol. 89, no. 6, pp. 555–563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Ojasto and K. Häkkinen, “Effects of different accentuated eccentric loads on acute neuromuscular,growth hormone, and blood lactate responses during a hypertrophic protocol,” Journal of Strength and Conditioning Research, vol. 23, no. 3, pp. 946–953, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. E. Dunn, J. L. Burns, and R. N. Michel, “Calcineurin is required for skeletal muscle hypertrophy,” The Journal of Biological Chemistry, vol. 274, no. 31, pp. 21908–21912, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. D. G. Sale, “Neural adaptation to resistance training,” Medicine & Science in Sports & Exercise, vol. 20, no. 5, pp. S135–S145, 1988. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Fang, V. Siemionow, V. Sahgal, F. Xiong, and G. H. Yue, “Greater movement-related cortical potential during human eccentric versus concentric muscle contractions,” Journal of Neurophysiology, vol. 86, no. 4, pp. 1764–1772, 2001. View at Google Scholar · View at Scopus
  42. N. Hedayatpour, L. Arendt-Nielsen, and D. Falla, “Facilitation of quadriceps activation is impaired following eccentric exercise,” Scandinavian Journal of Medicine and Science in Sports, vol. 24, no. 2, pp. 355–362, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Hedayatpour and D. Falla, “Delayed onset of vastii muscle activity in response to rapid postural perturbations following eccentric exercise: a mechanism that underpins knee pain after eccentric exercise?” British Journal of Sports Medicine, vol. 48, no. 6, pp. 429–434, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Moritani and H. A. DeVries, “Neural factors versus hypertrophy in the time course of muscle strength gain,” The American Journal of Physical Medicine, vol. 58, no. 3, pp. 115–130, 1979. View at Google Scholar · View at Scopus
  45. C. Vila-Chã, D. Falla, and D. Farina, “Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training,” Journal of Applied Physiology, vol. 109, no. 5, pp. 1455–1466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Patten, G. Kamen, and D. M. Rowland, “Adaptations in maximal motor unit discharge rate to strength training in young and older adults,” Muscle & Nerve, vol. 24, no. 4, pp. 542–550, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. M. van Cutsem, J. Duchateau, and K. Hainaut, “Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans,” Journal of Physiology, vol. 513, no. 1, pp. 295–305, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Griffin, P. E. Painter, A. Wadhwa, and W. W. Spirduso, “Motor unit firing variability and synchronization during short-term light-load training in older adults,” Experimental Brain Research, vol. 197, no. 4, pp. 337–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Aagaard, E. B. Simonsen, J. L. Andersen, P. Magnusson, and P. Dyhre-Poulsen, “Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses,” Journal of Applied Physiology, vol. 92, no. 6, pp. 2309–2318, 2002. View at Google Scholar · View at Scopus
  50. C. Vila-Chã, D. Falla, M. V. Correia, and D. Farina, “Adjustments in motor unit properties during fatiguing contractions after training,” Medicine and Science in Sports and Exercise, vol. 44, no. 4, pp. 616–624, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. E. L. Cadore, M. González-Izal, J. G. Pallarés et al., “Muscle conduction velocity, strength, neural activity, and morphological changes after eccentric and concentric training,” Scandinavian Journal of Medicine & Science in Sports, vol. 24, no. 5, pp. e343–e352, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. J. P. Farthing and P. D. Chilibeck, “The effects of eccentric and concentric training at different velocities on muscle hypertrophy,” European Journal of Applied Physiology, vol. 89, no. 6, pp. 578–586, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. S. D. Flanagan, C. Dunn-Lewis, B. A. Comstock et al., “Cortical activity during a highly-trained resistance exercise movement emphasizing force, power or volume,” Brain Sciences, vol. 2, no. 4, pp. 649–666, 2012. View at Publisher · View at Google Scholar
  54. A. M. Singh, R. E. Duncan, J. L. Neva, and W. R. Staines, “Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle,” BMC Sports Science, Medicine and Rehabilitation, vol. 6, no. 1, article 23, 2014. View at Publisher · View at Google Scholar
  55. S. G. Dasilva, L. Guidetti, C. F. Buzzachera et al., “Psychophysiological responses to self-paced treadmill and overground exercise,” Medicine & Science in Sports & Exercise, vol. 43, no. 6, pp. 1114–1124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Brümmer, S. Schneider, T. Abel, T. Vogt, and H. K. Strüder, “Brain cortical activity is influenced by exercise mode and intensity,” Medicine and Science in Sports and Exercise, vol. 43, no. 10, pp. 1863–1872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Moritani, S. Muramatsu, and M. Muro, “Activity of motor units during concentric and eccentric contractions,” The American Journal of Physical Medicine, vol. 66, no. 6, pp. 338–350, 1987. View at Google Scholar · View at Scopus
  58. J. N. Howell, A. J. Fuglevand, M. L. Walsh, and B. Bigland-Ritchie, “Motor unit activity during isometric and concentric-eccentric contractions of the human first dorsal interosseus muscle,” Journal of Neurophysiology, vol. 74, no. 2, pp. 901–904, 1995. View at Google Scholar · View at Scopus
  59. K. Nakazawa, Y. Kawakami, T. Fukunaga, H. Yano, and M. Miyashita, “Differences in activation patterns in elbow flexor muscles during isometric, concentric and eccentric contractions,” European Journal of Applied Physiology and Occupational Physiology, vol. 66, no. 3, pp. 214–220, 1993. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Romanò and M. Schieppati, “Reflex excitability of human soleus motoneurones during voluntary shortening or lengthening contractions,” Journal of Physiology, vol. 390, pp. 271–284, 1987. View at Publisher · View at Google Scholar · View at Scopus
  61. G. H. Yue, J. Z. Liu, V. Siemionow, V. K. Ranganathan, T. C. Ng, and V. Sahgal, “Brain activation during human finger extension and flexion movements,” Brain Research, vol. 856, no. 1-2, pp. 291–300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. P. B. C. Matthews, “The human stretch reflex and the motor cortex,” Trends in Neurosciences, vol. 14, no. 3, pp. 87–91, 1991. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Kamen and C. A. Knight, “Training-related adaptations in motor unit discharge rate in young and older adults,” Journals of Gerontology A, vol. 59, no. 12, pp. 1334–1338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. A. R. Pucci, L. Griffin, and E. Cafarelli, “Maximal motor unit firing rates during isometric resistance training in men,” Experimental Physiology, vol. 91, no. 1, pp. 171–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Rich and E. Cafarelli, “Submaximal motor unit firing rates after 8 wk of isometric resistance training,” Medicine and Science in Sports and Exercise, vol. 32, no. 1, pp. 190–196, 2000. View at Google Scholar · View at Scopus
  66. T. J. Dartnall, N. C. Rogasch, M. A. Nordstrom, and J. G. Semmler, “Eccentric muscle damage has variable effects on motor unit recruitment thresholds and discharge patterns in elbow flexor muscles,” Journal of Neurophysiology, vol. 102, no. 1, pp. 413–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Aagaard, E. B. Simonsen, J. L. Andersen, S. P. Magnusson, J. Halkjær-Kristensen, and P. Dyhre-Poulsen, “Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training,” Journal of Applied Physiology, vol. 89, no. 6, pp. 2249–2257, 2000. View at Google Scholar · View at Scopus
  68. P. Bawa, “Neural control of motor output: can training change it?” Exercise and Sport Sciences Reviews, vol. 30, no. 2, pp. 59–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. T. W. Kaminski, C. V. Wabbersen, and R. M. Murphy, “Concentric versus enhanced eccentric hamstring strength training: clinical implications,” Journal of Athletic Training, vol. 33, no. 3, pp. 216–221, 1998. View at Google Scholar · View at Scopus
  70. A. Nardone, C. Romano, and M. Schieppati, “Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles,” The Journal of Physiology, vol. 409, pp. 451–471, 1989. View at Publisher · View at Google Scholar · View at Scopus
  71. D. G. Behm and D. G. Sale, “Intended rather than actual movement velocity determines velocity-specific training response,” Journal of Applied Physiology, vol. 74, no. 1, pp. 359–368, 1993. View at Publisher · View at Google Scholar · View at Scopus
  72. V. Seliger, L. Dolejs, and V. Karas, “A dynamometric comparison of maximum eccentric, concentric, and isometric contractions using EMG and energy expenditure measurements,” European Journal of Applied Physiology and Occupational Physiology, vol. 45, no. 2-3, pp. 235–244, 1980. View at Publisher · View at Google Scholar · View at Scopus
  73. P. C. LaStayo, J. M. Woolf, M. D. Lewek, L. Snyder-Mackler, and S. L. Lindstedt, “Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport,” Journal of Orthopaedic and Sports Physical Therapy, vol. 33, no. 10, pp. 557–571, 2003. View at Google Scholar · View at Scopus
  74. N. Maffulli and U. G. Longo, “How do eccentric exercises work in tendinopathy?” Rheumatology, vol. 47, no. 10, pp. 1444–1445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. P. Gerber, R. L. Marcus, L. E. Dibble, P. E. Greis, R. T. Burks, and P. C. LaStayo, “Effects of early progressive eccentric exercise on muscle structure after anterior cruciate ligament reconstruction,” The Journal of Bone and Joint Surgery. American Volume, vol. 89, no. 3, pp. 559–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. G. Semmler, “Motor unit synchronization and neuromuscular performance,” Exercise and Sport Sciences Reviews, vol. 30, no. 1, pp. 8–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Felici, L. Colace, and P. Sbriccoli, “Surface EMG modifications after eccentric exercise,” Journal of Electromyography and Kinesiology, vol. 7, no. 3, pp. 193–202, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Fridén and R. L. Lieber, “Structural and mechanical basis of exercise-induced muscle injury,” Medicine & Science in Sports & Exercise, vol. 24, no. 5, pp. 521–530, 1992. View at Google Scholar · View at Scopus
  79. P. Sbriccoli, F. Felici, A. Rosponi et al., “Exercise induced muscle damage and recovery assessed by means of linear and non-linear sEMG analysis and ultrasonography,” Journal of Electromyography and Kinesiology, vol. 11, no. 2, pp. 73–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Hedayatpour, H. Hassanlouei, L. Arendt-Nielsen, U. G. Kersting, and D. Falla, “Delayed-onset muscle soreness alters the response to postural perturbations,” Medicine and Science in Sports and Exercise, vol. 43, no. 6, pp. 1010–1016, 2011. View at Publisher · View at Google Scholar · View at Scopus