Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 234675, 7 pages
Research Article

Association between Genetic Polymorphisms of DNA Repair Genes and Chromosomal Damage for 1,3-Butadiene-Exposed Workers in a Matched Study in China

1Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
2Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China

Received 1 December 2014; Accepted 2 February 2015

Academic Editor: Alessandra Pulliero

Copyright © 2015 Menglong Xiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD-) exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs) in the cytokinesis-blocked micronucleus (CBMN) cytome assay were adopted to detect chromosomal damage. PCR and PCR-restriction fragment length polymorphism (RFLP) are adopted to analyze polymorphisms of DNA repair genes, such as X-ray repair cross-complementing Group 1 (XRCC1), O6-methylguanine-DNA methyltransferase (MGMT), poly (adenosine diphosphate-ribose) polymerases (ADPRT), and apurinic/apyrimidinic endonucleases (APE1). The BD-exposed workers exhibited increased frequencies of MNi and NPBs when compared to subjects in the control group. The results also show that the BD-exposed workers carrying XRCC1 diplotypes TCGA-CCGG () (, 95% CI: 1.03–4.28) and TCGG-TCGA () (, 95% CI: 0.76–2.65) had statistically higher NBUD frequencies than those who carried diplotype TCGG-TCGG (). Our study suggests that polymorphisms of XRCC1 gene may influence chromosomal damage in BD-exposed workers.