Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 276182, 8 pages
http://dx.doi.org/10.1155/2015/276182
Research Article

Neural and Nonneural Contributions to Wrist Rigidity in Parkinson’s Disease: An Explorative Study Using the NeuroFlexor

1Department of Neuroscience, Rehabilitation Medicine, Uppsala University, 75105 Uppsala, Sweden
2Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
3Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, 18288 Stockholm, Sweden
4FR3636 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France

Received 8 August 2014; Accepted 17 October 2014

Academic Editor: Alfonso Fasano

Copyright © 2015 H. Zetterberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Fung and P. Thompson, “Rigidity and spasticity,” in Parkinson's Disease and Movement Disorders, J. Jankovic and E. Tolosa, Eds., pp. 473–482, Lippincott Williams & Wilkins, 4th edition, 2002. View at Google Scholar
  2. R. J. Meara and F. W. J. Cody, “Relationship between electromyographic activity and clinically assessed rigidity studied at the wrist joint in Parkinson's disease,” Brain, vol. 115, no. 4, pp. 1167–1180, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. M. B. Shapiro, D. E. Vaillancourt, M. M. Sturman, L. V. Metman, R. A. E. Bakay, and D. M. Corcos, “Effects of STN DBS on rigidity in Parkinson's disease,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 2, pp. 173–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Powell, N. Hanson, A. J. Threlkeld, X. Fang, and R. Xia, “Enhancement of parkinsonian rigidity with contralateral hand activation,” Clinical Neurophysiology, vol. 122, no. 8, pp. 1595–1601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H.-M. Lee, Y.-Z. Huang, J.-J. J. Chen, and I.-S. Hwang, “Quantitative analysis of the velocity related pathophysiology of spasticity and rigidity in the elbow flexors,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 72, no. 5, pp. 621–629, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Xia, J. Sun, and A. J. Threlkeld, “Analysis of interactive effect of stretch reflex and shortening reaction on rigidity in Parkinson's disease,” Clinical Neurophysiology, vol. 120, no. 7, pp. 1400–1407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Powell, A. J. Threlkeld, X. Fang, A. Muthumani, and R. Xia, “Amplitude- and velocity-dependency of rigidity measured at the wrist in Parkinson's disease,” Clinical Neurophysiology, vol. 123, no. 4, pp. 764–773, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Rothwell, J. A. Obeso, M. M. Traub, and C. D. Marsden, “The behaviour of the long-latency stretch reflex in patients with Parkinson's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 46, no. 1, pp. 35–44, 1983. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Hayashi, T. Hashimoto, T. Tada, and S. Ikeda, “Relation between changes in long-latency stretch reflexes and muscle stiffness in Parkinson's disease—comparison before and after unilateral pallidotomy,” Clinical Neurophysiology, vol. 112, no. 10, pp. 1814–1821, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Sepehri, A. Esteki, E. Ebrahimi-Takamjani, G.-A. Shahidi, F. Khamseh, and M. Moinodin, “Quantification of rigidity in Parkinson's disease,” Annals of Biomedical Engineering, vol. 35, no. 12, pp. 2196–2203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Endo, R. Okuno, M. Yokoe, K. Akazawa, and S. Sakoda, “A novel method for systematic analysis of rigidity in Parkinson's disease,” Movement Disorders, vol. 24, no. 15, pp. 2218–2224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. K. Park, Y. Kwon, J.-W. Kim et al., “Analysis of viscoelastic properties of wrist joint for quantification of parkinsonian rigidity,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 2, pp. 167–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Endo, T. Hamasaki, R. Okuno et al., “Parkinsonian rigidity shows variable properties depending on the elbow joint angle,” Parkinson's Disease, vol. 2013, Article ID 258374, 5 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Prochazka, D. J. Bennett, M. J. Stephens et al., “Measurement of rigidity in Parkinson's disease,” Movement Disorders, vol. 12, no. 1, pp. 24–32, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Patrick, A. A. Denington, M. J. Gauthier, D. M. Gillard, and A. Prochazka, “Quantification of the UPDRS rigidity scale,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 9, no. 1, pp. 31–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Ramaker, J. Marinus, A. M. Stiggelbout, and B. J. van Hilten, “Systematic evaluation of rating scales for impairment and disability in Parkinson's disease,” Movement Disorders, vol. 17, no. 5, pp. 867–876, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Marusiak, A. Jaskólska, M. Koszewicz, S. Budrewicz, and A. Jaskólski, “Myometry revealed medication-induced decrease in resting skeletal muscle stiffness in Parkinson's disease patients,” Clinical Biomechanics, vol. 27, no. 6, pp. 632–635, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Teravainen, J. K. C. Tsui, E. Mak, and D. B. Calne, “Optimal indices for testing parkinsonian rigidity,” Canadian Journal of Neurological Sciences, vol. 16, no. 2, pp. 180–183, 1989. View at Google Scholar · View at Scopus
  19. R. Xia, K. Markopoulou, S. E. Puumala, and W. Z. Rymer, “A comparison of the effects of imposed extension and flexion movements on Parkinsonian rigidity,” Clinical Neurophysiology, vol. 117, no. 10, pp. 2302–2307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. K. Y. Mak, E. C. Y. Wong, and C. W. Y. Hui-Chan, “Quantitative measurement of trunk rigidity in parkinsonian patients,” Journal of Neurology, vol. 254, no. 2, pp. 202–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. G. Lindberg, J. Gäverth, M. Islam, A. Fagergren, J. Borg, and H. Forssberg, “Validation of a new biomechanical model to measure muscle tone in spastic muscles,” Neurorehabilitation and Neural Repair, vol. 25, no. 7, pp. 617–625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Gäverth, M. Sandgren, P. G. Lindberg, H. Forssberg, and A.-C. Eliasson, “Test-retest and inter-rater reliability of a method to measure wrist and finger spasticity,” Journal of Rehabilitation Medicine, vol. 45, no. 7, pp. 630–636, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Fahn and R. Elton, “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S. Fahn, C. D. Marsden, M. Goldstein, and D. B. Calne, Eds., vol. 2, pp. 153–164, 293–304, Macmillan Healthcare Information, Florham Park, NJ, USA, 1987. View at Google Scholar
  24. E. Broussolle, P. Krack, S. Thobois, J. Xie-Brustolin, P. Pollak, and C. G. Goetz, “Contribution of Jules Froment to the study of parkinsonian rigidity,” Movement Disorders, vol. 22, no. 7, pp. 909–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. L. Tomlinson, R. Stowe, S. Patel, C. Rick, R. Gray, and C. E. Clarke, “Systematic review of levodopa dose equivalency reporting in Parkinson's disease,” Movement Disorders, vol. 25, no. 15, pp. 2649–2653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Winters and L. Stark, “Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models,” IEEE Transactions on Biomedical Engineering, vol. 32, no. 10, pp. 826–839, 1985. View at Google Scholar · View at Scopus
  27. K. W. Ranatunga, “Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest,” Journal of Muscle Research and Cell Motility, vol. 22, no. 5, pp. 399–414, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Bagni, G. Cecchi, F. Colomo, and P. Garzella, “Absence of mechanical evidence for attached weakly binding cross-bridges in frog relaxed muscle fibres,” Journal of Physiology, vol. 482, no. 2, pp. 391–400, 1995. View at Google Scholar · View at Scopus
  29. M. Halaki, N. O'Dwyer, and I. Cathers, “Systematic nonlinear relations between displacement amplitude and joint mechanics at the human wrist,” Journal of Biomechanics, vol. 39, no. 12, pp. 2171–2182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Murphy, C. Willén, and K. S. Sunnerhagen, “Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass,” Neurorehabilitation and Neural Repair, vol. 25, no. 1, pp. 71–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. L. Watts, A. W. Wiegner, and R. R. Young, “Elastic properties of muscles measured at the elbow in man: II. Patients with Parkinsonian rigidity,” Journal of Neurology Neurosurgery and Psychiatry, vol. 49, no. 10, pp. 1177–1181, 1986. View at Publisher · View at Google Scholar · View at Scopus
  32. J.-C. Lamy, I. Wargon, D. Mazevet, Z. Ghanim, P. Pradat-Diehl, and R. Katz, “Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients,” Brain, vol. 132, no. 3, pp. 734–748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. D. Johnson, J. Zhang, D. Ghosh, C. C. McIntyre, and J. L. Vitek, “Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation,” Journal of Neurophysiology, vol. 108, no. 2, pp. 567–577, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Baradaran, S. N. Tan, A. Liu et al., “Parkinson's disease rigidity: relation to brain connectivity and motor performance,” Frontiers in Neurology, vol. 4, article 67, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Hortobágyi, K. Scott, J. Lambert, G. Hamilton, and J. Tracy, “Cross-education of muscle strength is greater with stimulated than voluntary contractions,” Motor Control, vol. 3, no. 2, pp. 205–219, 1999. View at Google Scholar · View at Scopus
  36. M. Tuncer, K. J. Tucker, and K. S. Türker, “Influence of tooth clench on the soleus H-reflex,” Archives of Oral Biology, vol. 52, no. 4, pp. 374–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Zhou, “Chronic neural adaptations to unilateral exercise: mechanisms of cross education,” Exercise and Sport Sciences Reviews, vol. 28, no. 4, pp. 177–184, 2000. View at Google Scholar · View at Scopus
  38. T. Hortobágyi, “Cross education and the human central nervous system,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, no. 1, pp. 22–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Jenkinson and P. Brown, “New insights into the relationship between dopamine, beta oscillations and motor function,” Trends in Neurosciences, vol. 34, no. 12, pp. 611–618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Xia, D. Powell, W. Z. Rymer, N. Hanson, X. Fang, and A. J. Threlkeld, “Differentiation between the contributions of shortening reaction and stretch-induced inhibition to rigidity in Parkinson's disease,” Experimental Brain Research, vol. 209, no. 4, pp. 609–618, 2011. View at Publisher · View at Google Scholar · View at Scopus