Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 283634, 7 pages
http://dx.doi.org/10.1155/2015/283634
Clinical Study

Oral Curcumin (Meriva) Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris

Section of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy

Received 16 March 2015; Accepted 5 May 2015

Academic Editor: Oscar Palomares

Copyright © 2015 Emiliano Antiga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Gelfand, R. Weinstein, S. B. Porter, A. L. Neimann, J. A. Berlin, and D. J. Margolis, “Prevalence and treatment of psoriasis in the United Kingdom: a population-based study,” Archives of Dermatology, vol. 141, no. 12, pp. 1537–1541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Gelfand, S. R. Feldman, R. S. Stern, J. Thomas, T. Rolstad, and D. J. Margolis, “Determinants of quality of life in patients with psoriasis: a study from the US population,” Journal of the American Academy of Dermatology, vol. 51, no. 5, pp. 704–708, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. W. Greaves and G. D. Weinstein, “Treatment of psoriasis,” The New England Journal of Medicine, vol. 332, no. 9, pp. 581–588, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. P. K. Mukherjee and A. Wahile, “Integrated approaches towards drug development from Ayurveda and other Indian system of medicines,” Journal of Ethnopharmacology, vol. 103, no. 1, pp. 25–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. B. Fleischer Jr., S. R. Feldman, S. R. Rapp, D. M. Reboussin, M. Lyn Exum, and A. R. Clark, “Alternative therapies commonly used within a population of patients with psoriasis,” Cutis, vol. 58, no. 3, pp. 216–220, 1996. View at Google Scholar · View at Scopus
  6. D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the last 25 years,” Journal of Natural Products, vol. 70, no. 3, pp. 461–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. P. T. Ammon and M. A. Wahl, “Pharmacology of Curcuma longa,” Planta Medica, vol. 57, no. 1, pp. 1–7, 1991. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Goel, A. B. Kunnumakkara, and B. B. Aggarwal, “Curcumin as ‘Curecumin’: from kitchen to clinic,” Biochemical Pharmacology, vol. 75, no. 4, pp. 787–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Epstein, I. R. Sanderson, and T. T. MacDonald, “Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies,” British Journal of Nutrition, vol. 103, no. 11, pp. 1545–1557, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Basnet and N. Skalko-Basnet, “Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment,” Molecules, vol. 16, no. 6, pp. 4567–4598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Gupta, S. Patchva, and B. B. Aggarwal, “Therapeutic roles of curcumin: lessons learned from clinical trials,” The AAPS Journal, vol. 15, no. 1, pp. 195–218, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Shanmugam, G. Rane, M. Kanchi et al., “The multifaceted role of curcumin in cancer prevention and treatment,” Molecules, vol. 20, no. 2, pp. 2728–2769, 2015. View at Publisher · View at Google Scholar
  13. T. N. Shankar, N. V. Shantha, H. P. Ramesh, I. A. Murthy, and V. S. Murthy, “Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guinea pigs & monkeys,” Indian Journal of Experimental Biology, vol. 18, no. 1, pp. 73–75, 1980. View at Google Scholar · View at Scopus
  14. C. D. Lao, M. T. Ruffin IV, D. Normolle et al., “Dose escalation of a curcuminoid formulation,” BMC Complementary and Alternative Medicine, vol. 6, article 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Singh and B. B. Aggarwal, “Activation of transcription factor NF-κ B is suppressed by curcumin (diferuloylmethane),” The Journal of Biological Chemistry, vol. 270, no. 42, pp. 24995–25000, 1995. View at Publisher · View at Google Scholar
  16. S. C. Gupta, A. K. Tyagi, P. Deshmukh-Taskar, M. Hinojosa, S. Prasad, and B. B. Aggarwal, “Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols,” Archives of Biochemistry and Biophysics, vol. 559, pp. 91–99, 2014. View at Publisher · View at Google Scholar
  17. B. B. Aggarwal, S. C. Gupta, and B. Sung, “Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers,” British Journal of Pharmacology, vol. 169, no. 8, pp. 1672–1692, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Reddy and B. B. Aggarwal, “Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase,” FEBS Letters, vol. 341, no. 1, pp. 19–22, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-B. Yang, W. Song, L.-Y. Chen et al., “Differential expression and regulation of prohibitin during curcumin-induced apoptosis of immortalized human epidermal HaCaT cells,” International Journal of Molecular Medicine, vol. 33, no. 3, pp. 507–514, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Balasubramanian and R. L. Eckert, “Keratinocyte proliferation, differentiation, and apoptosis—differential mechanisms of regulation by curcumin, EGCG and apigenin,” Toxicology and Applied Pharmacology, vol. 224, no. 3, pp. 214–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Wilken, M. S. Veena, M. B. Wang, and E. S. Srivatsan, “Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma,” Molecular Cancer, vol. 10, article 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Vyas, S. Gupt, V. Dixit, K. Anita, and S. Kaur, “To study the effect of curcumin on the growth properties of circulating endothelial progenitor cells,” In Vitro Cellular & Developmental Biology—Animal, vol. 51, no. 5, pp. 488–494, 2015. View at Publisher · View at Google Scholar
  23. D. Kumar, M. Kumar, C. Saravanan, and S. K. Singh, “Curcumin: a potential candidate for matrix metalloproteinase inhibitors,” Expert Opinion on Therapeutic Targets, vol. 16, no. 10, pp. 959–972, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. C. Y. Heng, M. K. Song, J. Harker, and M. K. Heng, “Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters,” British Journal of Dermatology, vol. 143, no. 5, pp. 937–949, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Kurd, N. Smith, A. VanVoorhees et al., “Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: a prospective clinical trial,” Journal of the American Academy of Dermatology, vol. 58, no. 4, pp. 625–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Cuomo, G. Appendino, A. S. Dern et al., “Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation,” Journal of Natural Products, vol. 74, no. 4, pp. 664–669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Lowes, M. Suárez-Fariñas, and J. G. Krueger, “Immunology of psoriasis,” Annual Review of Immunology, vol. 32, pp. 227–255, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Michalak-Stoma, J. Bartosińska, M. Kowal, M. Juszkiewicz-Borowiec, A. Gerkowicz, and G. Chodorowska, “Serum levels of selected Th17 and Th22 cytokines in psoriatic patients,” Disease Markers, vol. 35, no. 6, pp. 625–631, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Benham, P. Norris, J. Goodall et al., “Th17 and Th22 cells in psoriatic arthritis and psoriasis,” Arthritis Research and Therapy, vol. 15, no. 5, article R136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Cosmi, R. de Palma, V. Santarlasci et al., “Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1903–1916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Caproni, E. Antiga, L. Melani, W. Volpi, E. del Bianco, and P. Fabbri, “Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial,” Journal of Clinical Immunology, vol. 29, no. 2, pp. 210–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Antiga, W. Volpi, C. Chiarini et al., “The role of etanercept on the expression of markers of T helper 17 cells and their precursors in skin lesions of patients with psoriasis vulgaris,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 3, pp. 767–774, 2010. View at Google Scholar · View at Scopus
  33. E. Antiga, W. Volpi, E. Cardilicchia et al., “Etanercept downregulates the Th17 pathway and decreases the IL-17+/IL-10+ cell ratio in patients with psoriasis vulgaris,” Journal of Clinical Immunology, vol. 32, no. 6, pp. 1221–1232, 2012. View at Publisher · View at Google Scholar
  34. C. S. Carlin, S. R. Feldman, J. G. Krueger, A. Menter, and G. G. Krueger, “A 50% reduction in the Psoriasis Area and Severity Index (PASI 50) is a clinically significant endpoint in the assessment of psoriasis,” Journal of the American Academy of Dermatology, vol. 50, no. 6, pp. 859–866, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. K. L. Grant and C. D. Schneider, “Turmeric,” American Journal of Health-System Pharmacy, vol. 57, no. 12, pp. 1121–1122, 2000. View at Google Scholar · View at Scopus
  36. C. R. Ireson, D. J. L. Jones, S. Orr et al., “Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine,” Cancer Epidemiology, Biomarkers and Prevention, vol. 11, no. 1, pp. 105–111, 2002. View at Google Scholar · View at Scopus
  37. P. M. Kidd, “Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts,” Alternative Medicine Review, vol. 14, no. 3, pp. 226–246, 2009. View at Google Scholar · View at Scopus
  38. T. H. Marczylo, R. D. Verschoyle, D. N. Cooke, P. Morazzoni, W. P. Steward, and A. J. Gescher, “Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine,” Cancer Chemotherapy and Pharmacology, vol. 60, no. 2, pp. 171–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Kanakasabai, E. Casalini, C. C. Walline, C. Mo, W. Chearwae, and J. J. Bright, “Differential regulation of CD4+ T helper cell responses by curcumin in experimental autoimmune encephalomyelitis,” Journal of Nutritional Biochemistry, vol. 23, no. 11, pp. 1498–1507, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. M.-J. Park, S.-J. Moon, S.-H. Lee et al., “Curcumin attenuates acute graft-versus-host disease severity via in vivo regulations on Th1, Th17 and regulatory T cells,” PLoS ONE, vol. 8, no. 6, Article ID e67171, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Sun, Y. Zhao, and J. Hu, “Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice,” PLoS ONE, vol. 8, no. 6, Article ID e67078, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Luan, Y. Ding, S. Han, Z. Zhang, and X. Liu, “An increased proportion of circulating Th22 and Tc22 cells in psoriasis,” Cellular Immunology, vol. 290, no. 2, pp. 196–200, 2014. View at Publisher · View at Google Scholar
  43. Y. Zheng, D. M. Danilenko, P. Valdez et al., “Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis,” Nature, vol. 445, no. 7128, pp. 648–651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. C.-Y. Kao, Y. Chen, P. Thai et al., “IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways,” Journal of Immunology, vol. 173, no. 5, pp. 3482–3491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Boniface, F.-X. Bernard, M. Garcia, A. L. Gurney, J.-C. Lecron, and F. Morel, “IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes,” The Journal of Immunology, vol. 174, no. 6, pp. 3695–3702, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Wolk, S. Kunz, E. Witte, M. Friedrich, K. Asadullah, and R. Sabat, “IL-22 increases the innate immunity of tissues,” Immunity, vol. 21, no. 2, pp. 241–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Eyerich, K. Eyerich, D. Pennino et al., “Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling,” The Journal of Clinical Investigation, vol. 119, no. 12, pp. 3573–3585, 2009. View at Publisher · View at Google Scholar · View at Scopus