Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 290861, 7 pages
http://dx.doi.org/10.1155/2015/290861
Research Article

Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits

1Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh
3Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
4Department of Land Management, Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
5Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
6Department of Biotechnology and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Received 27 February 2015; Revised 11 June 2015; Accepted 21 June 2015

Academic Editor: Stefano D’Amelio

Copyright © 2015 Mst. Tuhina-Khatun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sohrabi, M. Y. Rafii, M. M. Hanafi, A. S. N. Akmar, and M. A. Latif, “Genetic diversity of upland rice germplasm in malaysia based on quantitative traits,” The Scientific World Journal, vol. 2012, Article ID 416291, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. N. K. Fageria, M. C. S. Carvalho, and F. C. dos Santos, “Response of upland rice genotypes to nitrogen fertilization,” Communications in Soil Science and Plant Analysis, vol. 45, no. 15, pp. 2058–2066, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. N. K. Fageria, O. P. Moraes, and M. J. Vasconcelos, “Upland rice genotypes evaluation for phosphorus use efficiency,” Journal of Plant Nutrition, vol. 36, no. 12, pp. 1868–1880, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Vange, “Biometrical studies on genetic diversity of some upland rice (Oryza sativa L.) accessions,” Nature and Science, vol. 7, no. 1, 2009. View at Google Scholar
  5. IRRI, Major Research in Upland Rice, Varietal Diversity and Morpho-Agronomic Characteristics of Upland Rice, International Rice Research Institute, Los Baños, Philippines, 1975.
  6. Z. Fahmi, B. Abu Samah, and H. Abdullah, “Paddy industry and paddy farmers well-being: a success recipe for agriculture industry in Malaysia,” Asian Social Science, vol. 9, no. 3, pp. 177–181, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. K. A. Osman, A. M. Mustafa, F. Ali, Z. Yonglain, and Q. Fazhan, “Genetic variability for yield and related attributes of upland rice genotypes in semi arid zone (Sudan),” African Journal of Agricultural Research, vol. 7, no. 33, pp. 4613–4619, 2012. View at Publisher · View at Google Scholar
  8. P. Pandey, P. John Anurag, D. K. Tiwari, S. K. Yadav, and B. Kumar, “Genetic variability, diversity and association of quantitative traits with grain yield in rice (Oryza sativaL.),” Journal of Bio-Science, vol. 17, no. 1, pp. 77–82, 2009. View at Google Scholar · View at Scopus
  9. M. Akinwale, G. Gregorio, F. Nwilene, B. Akinyele, S. A. Ogunbayo, and A. C. Odiyi, “Heritability and correlation coefficient analysis for yield and its components in rice (Oryza sativa L.),” African Journal of Plant Science, vol. 5, pp. 207–212, 2011. View at Google Scholar
  10. M. Tuhina-Khatun, M. A. Newaz, and M. A. A. Bari, “Combining ability and heritability estimates in F2 diallel population of spring wheat under interacting environments,” Bangladesh Journal of Agricultural Sciences, vol. 34, pp. 75–82, 2007. View at Google Scholar
  11. S. O. Oikeh, F. E. Nwilene, T. A. Agunbiade et al., Growing Upland Rice: A Production Handbook, Africa Rice Center (WARDA), http://www.irri.org/.
  12. International Rice Research Institute, Standard Evaluation System for Rice, International Rice Research Institute, Manila, Philippines, 4th edition, 1996.
  13. G. W. Burton and E. H. DeVane, “Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material,” Agronomy Journal, vol. 45, no. 10, pp. 478–481, 1953. View at Publisher · View at Google Scholar
  14. H. W. Johnson, H. F. Robinson, and R. E. Comstock, “Estimates of genetic and environmental variability in soybeans,” Agronomy Journal, vol. 47, no. 7, pp. 314–318, 1955. View at Publisher · View at Google Scholar
  15. M. S. Mazid, M. Y. Rafii, M. M. Hanafi, H. A. Rahim, and M. A. Latif, “Genetic variation, heritability, divergence and biomass accumulation of rice genotypes resistant to bacterial blight revealed by quantitative traits and ISSR markers,” Physiologia Plantarum, vol. 149, no. 3, pp. 432–447, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Pandey and P. J. Anurag, “Estimation of genetic parameters in indigenous rice,” Advances in Agriculture & Botanics, vol. 2, no. 1, 2010. View at Google Scholar
  17. S. H. Habib, M. K. Bashar, M. Khalequzzaman,, M. S. Ahmed, and E. S. M. H. Rashid, “Genetic analysis and morpho-physiological selection criteria for traditional Biroin Bangladesh rice germplasms,” Journal of Biological Sciences, vol. 5, no. 3, pp. 315–318, 2005. View at Publisher · View at Google Scholar
  18. R. Saravanan and N. Senthil, “Genotypic and phenotypic variability, heritability and genetic advance in some important traits in rice,” The Madras Agricultural Journal, vol. 84, pp. 276–277, 1997. View at Google Scholar
  19. C. E. Jahn, J. K. Mckay, R. Mauleon et al., “Genetic variation in biomass traits among 20 diverse rice varieties,” Plant Physiology, vol. 155, no. 1, pp. 157–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. M. Akram, A. Ali, A. Sattar, H. S. U. Rehman, and A. Bibi, “Impact of water deficit stress on various physiological and agronomic traits of three Basmati rice (Oryza sativa L.) cultivars,” Journal of Animal and Plant Sciences, vol. 23, no. 5, pp. 1415–1423, 2013. View at Google Scholar · View at Scopus
  21. L. Ding, Y. R. Li, Y. Li, Q. R. Shen, and S. W. Guo, “Effects of drought stress on photosynthesis and water status of rice leaves,” Chinese Journal of Rice Science, vol. 28, no. 1, pp. 65–70, 2014. View at Google Scholar
  22. L. Laxuman, P. Salimath, and H. Shashidhar, “Analysis of genetics variability in interspecific backcross inbred lines in rice (Oryza sativa L.),” Karnataka Journal of Agricultural Sciences, vol. 23, pp. 563–565, 2010. View at Google Scholar
  23. F. Worede, T. Sreewongchai, C. Phumichai, and P. Sripichitt, “Multivariate analysis of genetic diversity among some rice genotypes using morpho-agronomic traits,” Journal of Plant Sciences, vol. 9, no. 1, pp. 14–24, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Ahmadikhah, S. Nasrollanejad, and O. Alishah, “Quantitative studies for investigating variation and its effect on heterosis of rice,” International Journal of Plant Production, vol. 2, pp. 297–308, 2008. View at Google Scholar
  25. M. M. Rahman, M. G. Rasul, M. K. Bashar, M. A. Syed, and M. R. Islam, “Parent selection for transplanted aman rice breeding by morphological, physiological and molecular diversity analysis,” Libyan Agriculture Research Center Journal International, vol. 2, pp. 26–28, 2011. View at Google Scholar
  26. F. C. Lasalita-Zapico, J. A. Namocatcat, and J. L. Cariño-Turner, “Genetic diversity analysis of traditional upland rice cultivars in Kihan, Malapatan, Sarangani Province, Philippines using morphometric markers,” Philippine Journal of Science, vol. 139, no. 2, pp. 177–180, 2010. View at Google Scholar · View at Scopus