Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 301627, 11 pages
http://dx.doi.org/10.1155/2015/301627
Research Article

Mycophenolate Mofetil Ameliorates Diabetic Nephropathy in db/db Mice

1Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 134-727, Republic of Korea
2Division of Cardiology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 134-727, Republic of Korea
3Department of Pathology, College of Medicine, Kyung Hee University, Seoul 134-727, Republic of Korea

Received 4 February 2015; Revised 7 May 2015; Accepted 11 May 2015

Academic Editor: Joilson O. Martins

Copyright © 2015 Jung-Woo Seo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Festa, R. D'Agostino Jr., G. Howard, L. Mykkänen, R. P. Tracy, and S. M. Haffner, “Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS),” Circulation, vol. 102, no. 1, pp. 42–47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. Navarro-González, C. Mora-Fernández, M. M. de Fuentes, and J. García-Pérez, “Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy,” Nature Reviews Nephrology, vol. 7, no. 6, pp. 327–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Wu, M. Wang, Z. Sun, X. Wang, J. Miao, and Z. Zheng, “The predictive value of TNF-alpha and IL-6 and the incidence of macrovascular complications in patients with type 2 diabetes,” Acta Diabetologica, vol. 49, no. 1, pp. 3–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. A. Tuttle, G. Davis-Gorman, S. Goldman, J. G. Copeland, and P. F. McDonagh, “Proinflammatory cytokines are increased in type 2 diabetic women with cardiovascular disease,” Journal of Diabetes and Its Complications, vol. 18, no. 6, pp. 343–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J.-Y. Moon, K.-H. Jeong, T.-W. Lee, C.-G. Ihm, S. J. Lim, and S.-H. Lee, “Aberrant recruitment and activation of T cells in diabetic nephropathy,” American Journal of Nephrology, vol. 35, no. 2, pp. 164–174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Y. Chow, D. J. Nikolic-Paterson, E. Ozols, R. C. Atkins, and G. H. Tesch, “Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice,” Journal of the American Society of Nephrology, vol. 16, no. 6, pp. 1711–1722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Utimura, C. K. Fujihara, A. L. Mattar, D. M. A. C. Malheiros, I. D. L. Noronha, and R. Zatz, “Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes,” Kidney International, vol. 63, no. 1, pp. 209–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Y.-G. Wu, H. Lin, X.-M. Qi et al., “Prevention of early renal injury by mycophenolate mofetil and its mechanism in experimental diabetes,” International Immunopharmacology, vol. 6, no. 3, pp. 445–453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Wu, J. Dong, L. Yuan et al., “Nephrin and podocin loss is prevented by mycophenolate mofetil in early experimental diabetic nephropathy,” Cytokine, vol. 44, no. 1, pp. 85–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Lv, Y. Zhang, G. Guan, P. Li, J. Wang, and D. Qi, “Mycophenolate mofetil and valsartan inhibit podocyte apoptosis in streptozotocin-induced diabetic rats,” Pharmacology, vol. 92, no. 3-4, pp. 227–234, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. A. C. Allison and E. M. Eugui, “Mycophenolate mofetil and its mechanisms of action,” Immunopharmacology, vol. 47, no. 2-3, pp. 85–118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Jiang, Q. Tang, R. Rong et al., “Mycophenolate mofetil inhibits macrophage infiltration and kidney fibrosis in long-term ischemia-reperfusion injury,” European Journal of Pharmacology, vol. 688, no. 1–3, pp. 56–61, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. S. von Vietinghoff, E. K. Koltsova, J. Mestas, C. J. Diehl, J. L. Witztum, and K. Ley, “Mycophenolate mofetil decreases atherosclerotic lesion size by depression of aortic T-lymphocyte and interleukin-17-mediated macrophage accumulation,” Journal of the American College of Cardiology, vol. 57, no. 21, pp. 2194–2204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H.-J. Paust, J.-E. Turner, O. M. Steinmetz et al., “The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis,” Journal of the American Society of Nephrology, vol. 20, no. 5, pp. 969–979, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. L. van Belle, K. T. Coppieters, and M. G. von Herrath, “Type 1 diabetes: etiology, immunology, and therapeutic strategies,” Physiological Reviews, vol. 91, no. 1, pp. 79–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C.-C. Wu, J.-S. Chen, K.-C. Lu et al., “Aberrant cytokines/chemokines production correlate with proteinuria in patients with overt diabetic nephropathy,” Clinica Chimica Acta, vol. 411, no. 9-10, pp. 700–704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Bending, H. de la Peña, M. Veldhoen et al., “Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 565–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Honkanen, J. K. Nieminen, R. Gao et al., “IL-17 immunity in human type 1 diabetes,” The Journal of Immunology, vol. 185, no. 3, pp. 1959–1967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Huo, C. Weber, S. B. Forlow et al., “The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium,” Journal of Clinical Investigation, vol. 108, no. 9, pp. 1307–1314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Putaala, R. Soininen, P. Kilpeläinen, J. Wartiovaara, and K. Tryggvason, “The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death,” Human Molecular Genetics, vol. 10, no. 1, pp. 1–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Susztak, A. C. Raff, M. Schiffer, and E. P. Böttinger, “Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy,” Diabetes, vol. 55, no. 1, pp. 225–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Schiffer, M. Bitzer, I. S. D. Roberts et al., “Apoptosis in podocytes induced by TGF-β and Smad7,” Journal of Clinical Investigation, vol. 108, no. 6, pp. 807–816, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Verzola, M. T. Gandolfo, F. Ferrario et al., “Apoptosis in the kidneys of patients with type II diabetic nephropathy,” Kidney International, vol. 72, no. 10, pp. 1262–1272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S.-M. Kim, Y.-G. Kim, K.-H. Jeong et al., “Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells,” PLoS ONE, vol. 7, no. 7, Article ID e39739, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Sedeek, G. Callera, A. Montezano et al., “Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy,” The American Journal of Physiology—Renal Physiology, vol. 299, no. 6, pp. F1348–F1358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. E. di Marco, S. P. Gray, P. Chew et al., “Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe(−/−) mice,” Diabetologia, vol. 57, no. 3, pp. 633–642, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Wolf, “Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis,” Antioxidants and Redox Signaling, vol. 7, no. 9-10, pp. 1337–1345, 2005. View at Publisher · View at Google Scholar · View at Scopus