Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 329057, 8 pages
http://dx.doi.org/10.1155/2015/329057
Research Article

Heart Rate Variability in Shift Workers: Responses to Orthostatism and Relationships with Anthropometry, Body Composition, and Blood Pressure

1School of Nutrition, Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
2School of Medicine, Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
3Department of Statistics, Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
4Institute of Psychiatry, Federal University of Rio de Janeiro, 22290-140 Rio de Janeiro, RJ, Brazil
5Institute of Cancer of São Paulo, 01255-000 São Paulo, SP, Brazil
6Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil

Received 19 February 2015; Revised 3 April 2015; Accepted 8 April 2015

Academic Editor: Giuseppe Biondi-Zoccai

Copyright © 2015 Nayara Mussi Monteze et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Xhyheri, O. Manfrini, M. Mazzolini, C. Pizzi, and R. Bugiardini, “Heart rate variability today,” Progress in Cardiovascular Diseases, vol. 55, no. 3, pp. 321–331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. Task Force, “Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996. View at Publisher · View at Google Scholar
  3. J. F. Thayer and R. D. Lane, “The role of vagal function in the risk for cardiovascular disease and mortality,” Biological Psychology, vol. 74, no. 2, pp. 224–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. F. Thayer, S. S. Yamamoto, and J. F. Brosschot, “The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors,” International Journal of Cardiology, vol. 141, no. 2, pp. 122–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G.-Y. Chen, T.-J. Hsiao, H.-M. Lo, and C.-D. Kuo, “Abdominal obesity is associated with autonomic nervous derangement in healthy Asian obese subjects,” Clinical Nutrition, vol. 27, no. 2, pp. 212–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Cysarz, P. van Leeuwen, F. Edelhäuser, N. Montano, and A. Porta, “Binary symbolic dynamics classifies heart rate variability patterns linked to autonomic modulations,” Computers in Biology and Medicine, vol. 42, no. 3, pp. 313–318, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Efremov, D. Brisinda, A. Venuti et al., “Heart rate variability analysis during head-up tilt test predicts nitroglycerine-induced syncope,” Open Heart, vol. 1, no. 1, Article ID e000063, 2014. View at Publisher · View at Google Scholar
  8. A. Porta, E. Tobaldini, S. Guzzetti, R. Furlan, N. Montano, and T. Gnecchi-Ruscone, “Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability,” The American Journal of Physiology: Heart and Circulatory Physiology, vol. 293, no. 1, pp. H702–H708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Togo and M. Takahashi, “Heart rate variability in occupational health–a systematic review,” Industrial Health, vol. 47, no. 6, pp. 589–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. B. G. Windham, S. Fumagalli, A. Ble et al., “The relationship between heart rate variability and adiposity differs for central and overall adiposity,” Journal of Obesity, vol. 2012, Article ID 149516, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Jermendy, J. Nádas, I. Hegyi, I. Vasas, and T. Hidvégi, “Assessment of cardiometabolic risk among shift workers in Hungary,” Health and Quality of Life Outcomes, vol. 10, article 18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. International Labour Office (ILO), Conditions of Work and Employment Programme, International Labour Office (ILO), Geneva, Switzerland, 2004, http://www.ilo.org/wcmsp5/groups/public/–-ed_protect/–-protrav/–-travail/documents/publication/wcms_170713.pdf.
  13. WHO, “Waist circumference and waist-hip ratio: report of a WHO expert consultation,” World Health Organization Technical Report Series, 2011. View at Google Scholar
  14. L. Ben-Noun, E. Sohar, and A. Laor, “Neck circumference as a simple screening measure for identifying overweight and obese patients,” Obesity Research, vol. 9, no. 8, pp. 470–477, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. G. Lohman, Advances in Body Composition Assessment: Current Issues in Exercises Science, Human Kinetic Publisher, Champaign, Ill, USA, 1992.
  16. Sociedade Brasileira de Cardiologia, Sociedade Brasileira de Hipertensão, and Sociedade Brasileira de Nefrologia, “VI Brazilian guidelines on hypertension,” Arquivos Brasileiros de Cardiologia, vol. 95, no. 1, supplement, pp. 1–51, 2010. View at Google Scholar
  17. G. A. Reyes del Paso, W. Langewitz, L. J. M. Mulder, A. van Roon, and S. Duschek, “The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies,” Psychophysiology, vol. 50, no. 5, pp. 477–487, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Goldstein, O. Bentho, M.-Y. Park, and Y. Sharabi, “Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes,” Experimental Physiology, vol. 96, no. 12, pp. 1255–1261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Perakakis, M. Joffily, M. Taylor, P. Guerra, and J. Vila, “KARDIA: a Matlab software for the analysis of cardiac interbeat intervals,” Computer Methods and Programs in Biomedicine, vol. 98, no. 1, pp. 83–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. L. T. Uusitalo, E. Vanninen, E. Levälahti, M. C. Battié, T. Videman, and J. Kaprio, “Role of genetic and environmental influences on heart rate variability in middle-aged men,” The American Journal of Physiology: Heart and Circulatory Physiology, vol. 293, no. 2, pp. H1013–H1022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Ishizaki, Y. Morikawa, H. Nakagawa et al., “The influence of work characteristics on body mass index and waist to hip ratio in Japanese employees,” Industrial Health, vol. 42, no. 1, pp. 41–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Guo, Y. Liu, X. Huang et al., “The effects of shift work on sleeping quality, hypertension and diabetes in retired workers,” PLoS ONE, vol. 8, no. 8, Article ID e71107, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kivimäki, G. D. Batty, and C. Hublin, “Shift work as a risk factor for future type 2 diabetes: evidence, mechanisms, implications, and future research directions,” PLoS Medicine, vol. 8, no. 12, Article ID e1001138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Nunan, G. R. H. Sandercock, and D. A. Brodie, “A quantitative systematic review of normal values for short-term heart rate variability in healthy adults,” Pacing and Clinical Electrophysiology, vol. 33, no. 11, pp. 1407–1417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T.-C. Su, L.-Y. Lin, D. Baker et al., “Elevated blood pressure, decreased heart rate variability and incomplete blood pressure recovery after a 12 hour night shift work,” Journal of Occupational Health, vol. 50, no. 5, pp. 380–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Kim, Y.-G. Park, K.-H. Cho et al., “Heart rate variability and obesity indices: emphasis on the response to noise and standing,” Journal of the American Board of Family Practice, vol. 18, no. 2, pp. 97–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Piccirillo, M. Ogawa, J. Song et al., “Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure,” Heart Rhythm, vol. 6, no. 4, pp. 546–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Lombardi, A. Malliani, M. Pagani, and S. Cerutti, “Heart rate variability and its sympatho-vagal modulation,” Cardiovascular Research, vol. 32, no. 2, pp. 208–216, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Piccirillo, F. Moscucci, G. D'Alessandro et al., “Myocardial repolarization dispersion and autonomic nerve activity in a canine experimental acute myocardial infarction model,” Heart Rhythm, vol. 11, no. 1, pp. 110–118, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. P. S. Ramos and C. G. S. Araújo, “Lower cardiac vagal tone in non-obese healthy men with unfavorable anthropometric characteristics,” Clinics, vol. 65, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Andrew, L. Shengqiao, J. Wactawski-Wende et al., “Adiposity, muscle, and physical activity: predictors of perturbations in heart rate variability,” American Journal of Human Biology, vol. 25, no. 3, pp. 370–377, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. W.-W. Yue, J. Yin, B. Chen et al., “Analysis of heart rate variability in masked hypertension,” Cell Biochemistry and Biophysics, vol. 70, no. 1, pp. 201–204, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Thiyagarajan, P. Pal, G. K. Pal et al., “Cardiovagal modulation, oxidative stress, and cardiovascular risk factors in prehypertensive subjects: cross-sectional study,” The American Journal of Hypertension, vol. 26, no. 7, pp. 850–857, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Penttilä, A. Helminen, T. Jartti et al., “Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns,” Clinical Physiology, vol. 21, no. 3, pp. 365–376, 2001. View at Publisher · View at Google Scholar · View at Scopus