Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 376230, 20 pages
http://dx.doi.org/10.1155/2015/376230
Review Article

The Global Ecology and Epidemiology of West Nile Virus

United States Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993-0002, USA

Received 24 June 2014; Accepted 10 August 2014

Academic Editor: Michael J. Conway

Copyright © 2015 Caren Chancey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Balanca, N. Gaidet, G. Savini et al., “Low West Nile virus circulation in wild birds in an area of recurring outbreaks in Southern France,” Vector-Borne and Zoonotic Diseases, vol. 9, no. 6, pp. 737–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Bernkopf, S. Levine, and R. Nerson, “Isolation of West Nile virus in Israel,” The Journal of Infectious Diseases, vol. 93, no. 3, pp. 207–218, 1953. View at Publisher · View at Google Scholar · View at Scopus
  3. V. P. Bondre, R. S. Jadi, A. C. Mishra, P. N. Yergolkar, and V. A. Arankalle, “West Nile virus isolates from India: evidence for a distinct genetic lineage,” Journal of General Virology, vol. 88, no. 3, pp. 875–884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Flatau, D. Kohn, O. Daher, and N. Varsano, “West Nile fever encephalitis,” Israel Journal of Medical Sciences, vol. 17, no. 11, pp. 1057–1059, 1981. View at Google Scholar · View at Scopus
  5. S. George, M. Gourie-Devi, J. A. Rao, S. R. Prasad, and K. M. Pavri, “Isolation of West Nile virus from the brains of children who had died of encephalitis,” Bulletin of the World Health Organization, vol. 62, no. 6, pp. 879–882, 1984. View at Google Scholar · View at Scopus
  6. N. Goldblum, V. V. Sterk, and B. Paderski, “West nile fever: The clinical features op tue disease and the isolation of west nile virus from the blood of nine human cases,” The American Journal of Epidemiology, vol. 59, no. 1, pp. 89–103, 1954. View at Google Scholar · View at Scopus
  7. K. Marberg, N. Goldblum, V. V. Sterk, W. Jasinska-klingberg, and M. A. Klingberg, “The natural history of west nile fever I. Clinical observations during an epidemic in Israel,” The American Journal of Epidemiology, vol. 64, no. 3, pp. 259–269, 1956. View at Google Scholar · View at Scopus
  8. P. G. Jupp, “The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans,” Annals of the New York Academy of Sciences, vol. 951, pp. 143–152, 2001. View at Google Scholar · View at Scopus
  9. B. Murgue, S. Murri, H. Triki, V. Deubel, and H. G. Zeller, “West nile in the mediterranean basin: 1950–2000,” Annals of the New York Academy of Sciences, vol. 951, pp. 117–126, 2001. View at Google Scholar · View at Scopus
  10. K. C. Smithburn, T. P. Hughes, A. W. Burke, and J. H. Hall, “A neurotropic virus isolated from the blood of a native of Uganda,” The American Journal of Tropical Medicine and Hygiene, vol. 20, pp. 471–472, 1940. View at Google Scholar
  11. I. Spigland, W. Jasinska-Klingberg, E. Hofshi, and N. Goldblum, “Clinical and laboratory observations in an outbreak of West Nile fever in Israel in 1957,” Harefuah, vol. 54, no. 11, pp. 275–280, 1958. View at Google Scholar · View at Scopus
  12. W. Pruzanski and R. Altman, “Encephalitis due to West Nile fever virus,” World neurology, vol. 3, pp. 524–528, 1962. View at Google Scholar · View at Scopus
  13. D. E. Carey, F. M. Rodrigues, R. M. Myers, and J. K. Webb, “Arthropod-borne viral infections in children in Vellore, South India, with particular reference to dengue and West Nile viruses,” Indian Pediatrics, vol. 5, no. 7, pp. 285–296, 1968. View at Google Scholar · View at Scopus
  14. A. E. Platonov, G. A. Shipulin, O. Y. Shipulina et al., “Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999,” Emerging Infectious Diseases, vol. 7, no. 1, pp. 128–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. F. Tsai, F. Popovici, C. Cernescu, G. L. Campbell, and N. I. Nedelcu, “West Nile encephalitis epidemic in Southeastern Romania,” The Lancet, vol. 352, no. 9130, pp. 767–771, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Weinberger, S. D. Pitlik, D. Gandacu et al., “West Nile fever outbreak, Israel, 2000: epidemiologic aspects,” Emerging Infectious Diseases, vol. 7, no. 4, pp. 686–691, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. ISID, “West Nile Virus Update 2006—Western Hemisphere (23): Argentina: First Case,” 2006, http://www.promedmail.org/direct.php?id=20061228.3642.
  18. B. M. Maillo, R. López-Vélez, F. Norman, F. de Ory, M. P. Sanchez-Seco, and C. G. Fedele, “Importation of West Nile virus infection from Nicaragua to Spain,” Emerging Infectious Diseases, vol. 14, no. 7, pp. 1171–1173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Calisher, N. Karabatsos, J. M. Dalrymple et al., “Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera,” Journal of General Virology, vol. 70, no. 1, pp. 37–43, 1989. View at Publisher · View at Google Scholar · View at Scopus
  20. A. T. de Madrid and J. S. Porterfield, “The flaviviruses (group B arboviruses): a cross neutralization study,” Journal of General Virology, vol. 23, no. 1, pp. 91–96, 1974. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Castle, T. Nowak, U. Leidner, and G. Wengler, “Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus west nile virus and of the genome sequence for these proteins,” Virology, vol. 145, no. 2, pp. 227–236, 1985. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Castle, U. Leidner, T. Nowak, G. Wengler, and G. Wengler, “Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins,” Virology, vol. 149, no. 1, pp. 10–26, 1986. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Coia, M. D. Parker, G. Speight, M. E. Byrne, and E. G. Westaway, “Nucleotide and complete amino acid sequences of Kunjin virus: Definitive gene order and characteristics of the virus-specified proteins,” Journal of General Virology, vol. 69, no. 1, pp. 1–21, 1988. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Speight, G. Coia, M. D. Parker, and E. G. Westaway, “Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites,” Journal of General Virology, vol. 69, no. 1, pp. 23–34, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Wengler, E. Castle, U. Leidner, T. Nowak, and G. Wengler, “Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene,” Virology, vol. 147, no. 2, pp. 264–274, 1985. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Brinton, A. V. Fernandez, and J. H. Dispoto, “The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure,” Virology, vol. 153, no. 1, pp. 113–121, 1986. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Wengler and E. Castle, “Analysis of structural properties which possibly are characteristic for the 3-terminal sequence of the genome RNA of flaviviruses,” Journal of General Virology, vol. 67, no. 6, pp. 1183–1188, 1986. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Nowak, P. M. Farber, G. Wengler, and G. Wengler, “Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis,” Virology, vol. 169, no. 2, pp. 365–376, 1989. View at Publisher · View at Google Scholar · View at Scopus
  29. F. X. Heinz and K. Stiasny, “Flaviviruses and their antigenic structure,” Journal of Clinical Virology, vol. 55, no. 4, pp. 289–295, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. A. A. Khromykh and E. G. Westaway, “RNA binding properties of core protein of the flavivirus Kunjin,” Archives of Virology, vol. 141, no. 3-4, pp. 685–699, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Markoff, B. Falgout, and A. Chang, “A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein,” Virology, vol. 233, no. 1, pp. 105–117, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Zhang, J. Corver, P. R. Chipman et al., “Structures of immature flavivirus particles,” The EMBO Journal, vol. 22, no. 11, pp. 2604–2613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Guirakhoo, F. X. Heinz, C. W. Mandl, H. Holzmann, and C. Kunz, “Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions,” Journal of General Virology, vol. 72, no. 6, pp. 1323–1329, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. F. X. Heinz, K. Stiasny, G. Puschner-Auer et al., “Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM,” Virology, vol. 198, no. 2, pp. 109–117, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Stadler, S. L. Allison, J. Schalich, and F. X. Heinz, “Proteolytic activation of tick-borne encephalitis virus by furin,” Journal of Virology, vol. 71, no. 11, pp. 8475–8481, 1997. View at Google Scholar · View at Scopus
  36. Y. Zhang, B. Kaufmann, P. R. Chipman, R. J. Kuhn, and M. G. Rossmann, “Structure of immature West Nile virus,” Journal of Virology, vol. 81, no. 11, pp. 6141–6145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Junjhon, T. J. Edwards, U. Utaipat et al., “Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles,” Journal of Virology, vol. 84, no. 16, pp. 8253–8358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Kaufmann and M. G. Rossmann, “Molecular mechanisms involved in the early steps of flavivirus cell entry,” Microbes and Infection, vol. 13, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Smit, B. Moesker, I. Rodenhuis-Zybert, and J. Wilschut, “Flavivirus cell entry and membrane fusion,” Viruses, vol. 3, no. 2, pp. 160–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Stiasny and F. X. Heinz, “Flavivirus membrane fusion,” Journal of General Virology, vol. 87, no. 10, pp. 2755–2766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. A. Khromykh, P. L. Sedlak, and E. G. Westaway, “trans-Complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication,” Journal of Virology, vol. 73, no. 11, pp. 9247–9255, 1999. View at Google Scholar · View at Scopus
  42. B. D. Lindenbach and C. M. Rice, “trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication,” Journal of Virology, vol. 71, no. 12, pp. 9608–9617, 1997. View at Google Scholar · View at Scopus
  43. J. M. Mackenzie, M. K. Jones, and P. R. Young, “Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication,” Virology, vol. 220, no. 1, pp. 232–240, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Borowski, A. O. Niebuhr, M. Mueller et al., “Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of the enzyme,” Journal of Virology, vol. 75, pp. 3220–3229, 2001. View at Google Scholar
  45. T. J. Chambers, A. Nestorowicz, S. M. Amberg, and C. M. Rice, “Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication,” Journal of Virology, vol. 67, no. 11, pp. 6797–6807, 1993. View at Google Scholar · View at Scopus
  46. B. Falgout, R. H. Miller, and C.-J. Lai, “Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity,” Journal of Virology, vol. 67, no. 4, pp. 2034–2042, 1993. View at Google Scholar · View at Scopus
  47. A. E. Gorbalenya, E. V. Koonin, A. P. Donchenko, and V. M. Blinov, “Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes,” Nucleic Acids Research, vol. 17, no. 12, pp. 4713–4730, 1989. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. Shiryaev, A. V. Chernov, A. E. Aleshin, T. N. Shiryaeva, and A. Y. Strongin, “NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus,” Journal of General Virology, vol. 90, no. 9, pp. 2081–2085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Wengler, G. Czaya, P. M. Farber, and J. H. Hegemann, “In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids,” Journal of General Virology, vol. 72, no. 4, pp. 851–858, 1991. View at Publisher · View at Google Scholar · View at Scopus
  50. A. A. Khromykh, M. T. Kenney, and E. G. Westaway, “trans-Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells,” Journal of Virology, vol. 72, no. 9, pp. 7270–7279, 1998. View at Google Scholar · View at Scopus
  51. E. V. Koonin, “Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and λ2 protein of reovirus,” Journal of General Virology, vol. 74, no. 4, pp. 733–740, 1993. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Ray, A. Shah, and M. Tilgner, “West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5,” Journal of Virology, vol. 80, no. 17, pp. 8362–8370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Steffens, H.-J. Thiel, and S.-E. Behrens, “The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro,” Journal of General Virology, vol. 80, no. 10, pp. 2583–2590, 1999. View at Google Scholar · View at Scopus
  54. M. A. Brinton, “The molecular biology of West Nile virus: a new invader of the Western hemisphere,” Annual Review of Microbiology, vol. 56, pp. 371–402, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Y. Leung, G. P. Pijlman, N. Kondratieva, J. Hyde, J. M. Mackenzie, and A. A. Khromykh, “Role of nonstructural protein NS2A in flavivirus assembly,” Journal of Virology, vol. 82, no. 10, pp. 4731–4741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. W. J. Liu, H. B. Chen, and A. A. Khromykh, “Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication,” Journal of Virology, vol. 77, no. 14, pp. 7804–7813, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Youn, R. L. Ambrose, J. M. MacKenzie, and M. S. Diamond, “Non-structural protein-1 is required for West Nile virus replication complex formation and viral RNA synthesis,” Virology Journal, vol. 10, article 339, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Avirutnan, A. Fuchs, R. E. Hauhart et al., “Antagonism of the complement component C4 by flavivirus nonstructural protein NS1,” Journal of Experimental Medicine, vol. 207, no. 4, pp. 793–806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Avirutnan, R. E. Hauhart, P. Somnuke, A. M. Blom, M. S. Diamond, and J. P. Atkinson, “Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation,” Journal of Immunology, vol. 187, no. 1, pp. 424–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. K. M. Chung, M. K. Liszewski, G. Nybakken et al., “West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 50, pp. 19111–19116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. C. Kyung, B. S. Thompson, D. H. Fremont, and M. S. Diamond, “Antibody recognition of cell surface-associated NS1 triggers Fc-γ receptor-mediated phagocytosis and clearance of West Nile virus-infected cells,” Journal of Virology, vol. 81, no. 17, pp. 9551–9555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Laurent-Rolle, E. F. Boer, K. J. Lubick et al., “The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling,” Journal of Virology, vol. 84, no. 7, pp. 3503–3515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. J. L. Wen, B. C. Hua, J. W. Xiang, H. Huang, and A. A. Khromykh, “Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription,” Journal of Virology, vol. 78, no. 22, pp. 12225–12235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. W. J. Liu, X. J. Wang, V. V. Mokhonov, P.-Y. Shi, R. Randall, and A. A. Khromykh, “Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins,” Journal of Virology, vol. 79, no. 3, pp. 1934–1942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. E. B. Melian, J. H. Edmonds, T. K. Nagasaki, E. Hinzman, N. Floden, and A. A. Khromykh, “West Nile virus NS2A protein facilitates virus-induced apoptosis independently of interferon response,” Journal of General Virology, vol. 94, no. 2, pp. 308–313, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. J. L. Muñoz-Jordán, M. Laurent-Rolle, J. Ashour et al., “Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses,” Journal of Virology, vol. 79, no. 13, pp. 8004–8013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. J. R. Wilson, P. F. De Sessions, M. A. Leon, and F. Scholle, “West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction,” Journal of Virology, vol. 82, no. 17, pp. 8262–8271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Bakonyi, Z. Hubálek, I. Rudolf, and N. Nowotny, “Novel flavivirus or new lineage of West Nile virus, Central Europe,” Emerging Infectious Diseases, vol. 11, no. 2, pp. 225–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. F.-X. Berthet, H. G. Zeller, M.-T. Drouet, J. Rauzier, J.-P. Digoutte, and V. Deubel, “Extensive nucleotide changes and deletions within the envelope glycoprotein genes of Euro-African West Nile viruses,” Journal of General Virology, vol. 78, no. 9, pp. 2293–2297, 1997. View at Google Scholar · View at Scopus
  70. X.-Y. Jia, T. Briese, I. Jordan et al., “Genetic analysis of West Nile New York 1999 encephalitis virus,” The Lancet, vol. 354, no. 9194, pp. 1971–1972, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. R. S. Lanciotti, G. D. Ebel, V. Deubel et al., “Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East,” Virology, vol. 298, no. 1, pp. 96–105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. F. J. May, C. T. Davis, R. B. Tesh, and A. D. T. Barrett, “Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas,” Journal of Virology, vol. 85, no. 6, pp. 2964–2974, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. J. H. Scherret, M. Poidinger, J. S. Mackenzie et al., “The relationships between West Nile and Kunjin viruses,” Emerging Infectious Diseases, vol. 7, no. 4, pp. 697–705, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. E. M. Botha, W. Markotter, M. Wolfaardt et al., “Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains,” Emerging Infectious Diseases, vol. 14, no. 2, pp. 222–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Vázquez, M. P. Sánchez-Seco, S. Ruiz et al., “Putative new lineage of West Nile virus, Spain,” Emerging Infectious Diseases, vol. 16, no. 3, pp. 549–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. R. G. McLean, S. R. Ubico, D. Bourne, and N. Komar, “West Nile virus in livestock and wildlife,” Current Topics in Microbiology and Immunology, vol. 267, pp. 271–308, 2002. View at Google Scholar · View at Scopus
  77. L. R. Petersen and J. T. Roehrig, “West Nile virus: a reemerging global pathogen,” Emerging Infectious Diseases, vol. 7, no. 4, pp. 611–614, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Zehender, E. Ebranati, F. Bernini et al., “Phylogeography and epidemiological history of West Nile virus genotype 1a in Europe and the Mediterranean basin,” Infection, Genetics and Evolution, vol. 11, no. 3, pp. 646–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. F. J. Burt, A. A. Grobbelaar, P. A. Leman, F. S. Anthony, G. V. F. Gibson, and R. Swanepoel, “Phylogenetic relationships of Southern African West Nile virus isolates,” Emerging Infectious Diseases, vol. 8, no. 8, pp. 820–826, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Erdélyi, K. Ursu, E. Ferenczi et al., “Clinical and pathologic features of lineage 2 West Nile virus infections in birds of prey in Hungary,” Vector-Borne and Zoonotic Diseases, vol. 7, no. 2, pp. 181–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. K. S. A. Myint, H. Kosasih, I. M. Artika et al., “Short report: west nile virus documented in Indonesia from acute febrile illness specimens,” The American Journal of Tropical Medicine and Hygiene, vol. 90, no. 2, pp. 260–262, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Ciccozzi, S. Peletto, E. Cella et al., “Epidemiological history and phylogeography of West Nile virus lineage 2,” Infection, Genetics and Evolution, vol. 17, pp. 46–50, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. M. T. Aliota, S. A. Jones, A. P. Dupuis II, A. T. Ciota, Z. Hubalek, and L. D. Kramer, “Characterization of Rabensburg virus, a flavivirus closely related to West Nile virus of the Japanese encephalitis antigenic group,” PLoS ONE, vol. 7, no. 6, Article ID e39387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. D. K. Lvov, A. M. Butenko, V. L. Gromashevsky et al., “West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations,” Archives of Virology, Supplement, no. 18, pp. 85–96, 2004. View at Google Scholar
  85. A. E. Platonov, L. S. Karan', T. A. Shopenskaia et al., “Genotyping of West Nile fever virus strains circulating in southern Russia as an epidemiological investigation method: principles and results,” Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, no. 2, pp. 29–37, 2011. View at Google Scholar · View at Scopus
  86. P. Chowdhury, S. A. Khan, P. Dutta, R. Topno, and J. Mahanta, “Characterization of West Nile virus (WNV) isolates from Assam, India: insights into the circulating WNV in Northeastern India,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 37, no. 1, pp. 39–47, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. G. Fall, M. Diallo, C. Loucoubar, O. Faye, and A. A. Sall, “Vector competence of Culex neavei and Culex quinquefasciatus (Diptera: Culicidae) from Senegal for lineages 1, 2, Koutango and a putative new lineage of West Nile virus,” American Journal of Tropical Medicine and Hygiene, vol. 90, no. 4, pp. 747–754, 2014. View at Publisher · View at Google Scholar · View at Scopus
  88. J. S. MacKenzie and D. T. Williams, “The zoonotic flaviviruses of Southern, South-Eastern and Eastern Asia, and Australasia: the potential for emergent viruses,” Zoonoses and Public Health, vol. 56, no. 6-7, pp. 338–356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. K. M. Van Der Meulen, M. B. Pensaert, and H. J. Nauwynck, “West Nile virus in the vertebrate world,” Archives of Virology, vol. 150, no. 4, pp. 637–657, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Komar, S. Langevin, S. Hinten et al., “Experimental infection of North American birds with the New York 1999 strain of West Nile virus,” Emerging Infectious Diseases, vol. 9, no. 3, pp. 311–322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. A. M. Kilpatrick, P. Daszak, M. J. Jones, P. P. Marra, and L. D. Kramer, “Host heterogeneity dominates West Nile virus transmission,” Proceedings of the Royal Society B: Biological Sciences, vol. 273, no. 1599, pp. 2327–2333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Gómez, L. D. Kramer, A. P. Dupuis II et al., “Experimental infection of eastern gray squirrels (Sciurus carolinensis) with West Nile virus,” The American Journal of Tropical Medicine and Hygiene, vol. 79, no. 3, pp. 447–451, 2008. View at Google Scholar · View at Scopus
  93. K. B. Platt, B. J. Tucker, P. G. Halbur et al., “West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes,” Emerging Infectious Diseases, vol. 13, no. 6, pp. 831–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. K. B. Platt, B. J. Tucker, P. G. Halbur et al., “Fox squirrels (Sciurus niger) develop West Nile virus viremias sufficient for infecting select mosquito species,” Vector-Borne and Zoonotic Diseases, vol. 8, no. 2, pp. 225–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. J. J. Root, “West Nile virus associations in wild mammals: a synthesis,” Archives of Virology, vol. 158, no. 4, pp. 735–752, 2013. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Tiawsirisup, K. B. Platt, B. J. Tucker, and W. A. Rowley, “Eastern cottontail rabbits (Sylvilagus floridanus) develop West Nile virus viremias sufficient for infecting select mosquito species,” Vector-Borne and Zoonotic Diseases, vol. 5, no. 4, pp. 342–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Rodhain, J. J. Petter, R. Albignac, P. Coulanges, and C. Hannoun, “Arboviruses and lemurs in Madagascar: experimental infection of Lemur fulvus with yellow fever and West Nile viruses,” The American Journal of Tropical Medicine and Hygiene, vol. 34, no. 4, pp. 816–822, 1985. View at Google Scholar · View at Scopus
  98. M. A. Kostiukov, Z. E. Gordeeva, V. P. Bulychev, N. V. Nemova, and O. A. Daniiarov, “The lake frog (Rana ridibunda)—one of the food hosts of blood-sucking mosquitoes in Tadzhikistan—a reservoir of the West Nile fever virus,” Meditsinskaya Parazitologiya i Parazitarnye Bolezni, no. 3, pp. 49–50, 1985. View at Google Scholar · View at Scopus
  99. L. N. Pealer, A. A. Marfin, L. R. Petersen et al., “Transmission of West Nile virus through blood transfusion in the United States in 2002,” The New England Journal of Medicine, vol. 349, no. 13, pp. 1236–1245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Iwamoto, D. B. Jernigan, A. Guasch et al., “Transmission of West Nile virus from an organ donor to four transplant recipients,” The New England Journal of Medicine, vol. 348, no. 22, pp. 2196–2203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. “Intrauterine West Nile virus infection—New York, 2002,” Morbidity and Mortality Weekly Report, vol. 51, no. 50, pp. 1135–1136, 2002.
  102. A. F. Hinckley, D. R. O'Leary, and E. B. Hayes, “Transmission of West Nile virus through human breast milk seems to be rare,” Pediatrics, vol. 119, no. 3, pp. e666–e671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. Centers for Disease Control and Prevention (CDC), “Possible West Nile virus transmission to an infant through breast-feeding—Michigan,” MMWR Morb Mortal. Wkly Rep, vol. 51, no. 39, pp. 877–878, 2002. View at Google Scholar
  104. Centers for Disease Control and Prevention, “Fatal west nile virus infection after probable transfusion-associated transmission: Colorado,” MMWR: Morbidity and Mortality Weekly Report, vol. 62, no. 31, p. 622-624, 2013. View at Google Scholar
  105. L. R. Petersen and M. P. Busch, “Transfusion-transmitted arboviruses,” Vox Sanguinis, vol. 98, no. 4, pp. 495–503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. S. P. Montgomery, J. A. Brown, M. Kuehnert et al., “Transfusion-associated transmission of West Nile virus, United States 2003 through 2005,” Transfusion, vol. 46, no. 12, pp. 2038–2046, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. G. M. Meny, L. Santos-Zabala, A. Szallasi, and S. L. Stramer, “West Nile virus infection transmitted by granulocyte transfusion,” Blood, vol. 117, no. 21, pp. 5778–5779, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. Centers for Disease Control and Prevention, “Entomology,” 2009, http://www.cdc.gov/ncidod/dvbid/westnile/mosquitoSpecies.htm.
  109. M. J. Turell, D. J. Dohm, M. R. Sardelis, M. L. O'Guinn, T. G. Andreadis, and J. A. Blow, “An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus,” Journal of Medical Entomology, vol. 42, no. 1, pp. 57–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. A. M. Kilpatrick, L. D. Kramer, S. R. Campbell, E. O. Alleyne, A. P. Dobson, and P. Daszak, “West Nile virus risk assessment and the bridge vector paradigm,” Emerging Infectious Diseases, vol. 11, no. 3, pp. 425–429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. M. J. Turell, M. R. Sardelis, M. L. O'Guinn, and D. J. Dohm, “Potential vectors of West Nile virus in North America,” Current Topics in Microbiology and Immunology, vol. 267, pp. 241–252, 2002. View at Google Scholar · View at Scopus
  112. T. G. Andreadis, “The contribution of culex pipiens complex mosquitoes to transmission and persistence of west nile virus in North America,” Journal of the American Mosquito Control Association, vol. 28, no. 4, pp. 137–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Balenghien, M. Vazeille, M. Grandadam et al., “Vector competence of some French Culex and Aedes mosquitoes for West Nile virus,” Vector-Borne and Zoonotic Diseases, vol. 8, no. 5, pp. 589–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. P. G. Jupp, “Laboratory studies on the transmission of West Nile virus by Culex (Culex) univittatus Theobald; factors influencing the transmission rate,” Journal of Medical Entomology, vol. 11, no. 4, pp. 455–458, 1974. View at Google Scholar · View at Scopus
  115. J. S. Mackenzie, M. D. Lindsay, R. J. Coelen, A. K. Broom, R. A. Hall, and D. W. Smith, “Arboviruses causing human disease in the Australasian zoogeographic region,” Archives of Virology, vol. 136, no. 3-4, pp. 447–467, 1994. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Muñoz, S. Ruiz, R. Soriguer et al., “Feeding patterns of potential West Nile virus vectors in South-West Spain,” PLoS ONE, vol. 7, no. 6, article e39549, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. M. M. Abbassy, M. Osman, and A. S. Marzouk, “West Nile virus (Flaviviridae: Flavivirus) in experimentally infected Argas ticks (Acari: Argasidae),” The American Journal of Tropical Medicine and Hygiene, vol. 48, no. 5, pp. 726–737, 1993. View at Google Scholar · View at Scopus
  118. P. Formosinho and M. M. Santos-Silva, “Experimental infection of Hyalomma marginatum ticks with West Nile virus,” Acta Virologica, vol. 50, no. 3, pp. 175–180, 2006. View at Google Scholar · View at Scopus
  119. H. J. Hutcheson, C. H. Gorham, C. Machain-Williams et al., “Experimental transmission of West Nile virus (Flaviviridae: Flavivirus) by Carios capensis ticks from North America,” Vector-Borne and Zoonotic Diseases, vol. 5, no. 3, pp. 293–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. C. H. Lawrie, N. Y. Uzcátegui, E. A. Gould, and P. A. Nuttall, “Ixodid and argasid tick species and west nile virus,” Emerging Infectious Diseases, vol. 10, no. 4, pp. 653–657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. O. W. Lwande, J. Lutomiah, V. Obanda et al., “Isolation of tick and mosquito-borne arboviruses from ticks sampled from livestock and wild animal hosts in Ijara District, Kenya,” Vector-Borne and Zoonotic Diseases, vol. 13, no. 9, pp. 637–642, 2013. View at Publisher · View at Google Scholar · View at Scopus
  122. A. V. Bode, J. J. Sejvar, W. J. Pape, G. L. Campbell, and A. A. Marfin, “West Nile Virus disease: a descriptive study of 228 patients hospitalized in a 4-county region of Colorado in 2003,” Clinical Infectious Diseases, vol. 42, no. 9, pp. 1234–1240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. P. J. Carson, S. M. Borchardt, B. Custer et al., “Neuroinvasive disease and west nile virus infection, North Dakota, USA, 1999–2008,” Emerging Infectious Diseases, vol. 18, no. 4, pp. 684–686, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Danis, A. Papa, G. Theocharopoulos et al., “Outbreak of West Nile virus infection in Greece, 2010,” Emerging Infectious Diseases, vol. 17, no. 10, pp. 1868–1872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. C. M. Jean, S. Honarmand, J. K. Louie, and C. A. Glaser, “Risk factors for West Nile virus neuroinvasive disease, California, 2005,” Emerging Infectious Diseases, vol. 13, no. 12, pp. 1918–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. E. Kopel, Z. Amitai, H. Bin, L. M. Shulman, E. Mendelson, and R. Shefer, “Surveillance of west Nile virus disease, Tel Aviv district, Israel, 2005 to 2010,” Eurosurveillance, vol. 16, no. 25, 2011. View at Google Scholar · View at Scopus
  127. N. P. Lindsey, E. B. Hayes, J. E. Staples, and M. Fischer, “West Nile virus disease in children, United States, 1999–2007,” Pediatrics, vol. 123, no. 6, pp. e1084–e1089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. N. P. Lindsey, J. Erin Staples, J. A. Lehman, and M. Fischer, “Surveillance for human west Nile virus disease-United States, 1999–2008,” Morbidity and Mortality Weekly Report, vol. 59, no. 2, pp. 1–17, 2010. View at Google Scholar · View at Scopus
  129. N. P. Lindsey, J. E. Staples, J. A. Lehman, and M. Fischer, “Medical risk factors for severe West Nile virus disease, United States, 2008–2010,” The American Journal of Tropical Medicine and Hygiene, vol. 87, no. 1, pp. 179–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. D. Nash, F. Mostashari, A. Fine et al., “The outbreak of West Nile virus infection in the New York City area in 1999,” The New England Journal of Medicine, vol. 344, no. 24, pp. 1807–1814, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. J. L. Patnaik, H. Harmon, and R. L. Vogt, “Follow-up of 2003 human West Nile virus infections, Denver, Colorado,” Emerging Infectious Diseases, vol. 12, no. 7, pp. 1129–1131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. E. B. Hayes and D. R. O'Leary, “West Nile virus infection: a pediatric perspective,” Pediatrics, vol. 113, no. 5, pp. 1375–1381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. F. Mostashari, M. L. Bunning, P. T. Kitsutani et al., “Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey,” The Lancet, vol. 358, no. 9278, pp. 261–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Zou, G. A. Foster, R. Y. Dodd, L. R. Petersen, and S. L. Stramer, “West Nile fever characteristics among viremic persons identified through blood donor screening,” Journal of Infectious Diseases, vol. 202, no. 9, pp. 1354–1361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. J. D. Fratkin, A. A. Leis, D. S. Stokic, S. A. Slavinski, and R. W. Geiss, “pinal cord neuropathology in human West Nile virus infection,” Archives of Pathology and Laboratory Medicine, vol. 128, no. 5, pp. 533–537, 2004. View at Google Scholar · View at Scopus
  136. M. P. Busch, D. J. Wright, B. Custer et al., “West nile virus infections projected from blood donor screening data, United States, 2003,” Emerging Infectious Diseases, vol. 12, no. 3, pp. 395–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. G. A. F. Ladbury, M. Gavana, K. Danis et al., “Population seroprevalence study after a West Nile virus lineage 2 epidemic, Greece, 2010,” PLoS ONE, vol. 8, no. 11, Article ID e80432, 2013. View at Publisher · View at Google Scholar · View at Scopus
  138. D. S. Asnis, R. Conetta, G. Waldman, and A. A. Teixeira, “The West Nile virus encephalitis outbreak in the United States (1999–2000): from Flushing, New York, to beyond its borders,” Annals of the New York Academy of Sciences, vol. 951, pp. 161–171, 2001. View at Google Scholar · View at Scopus
  139. R. Brilla, M. Block, G. Geremia, and M. Wichter, “Clinical and neuroradiologic features of 39 consecutive cases of West Nile Virus meningoencephalitis,” Journal of the Neurological Sciences, vol. 220, no. 1-2, pp. 37–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. M. Emig and D. J. Apple, “Severe West Nile virus disease in healthy adults,” Clinical Infectious Diseases, vol. 38, no. 2, pp. 289–292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. A. L. Klee, B. Maldin, B. Edwin et al., “Long-term prognosis for clinical West Nile virus infection,” Emerging Infectious Diseases, vol. 10, no. 8, pp. 1405–1411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. K. O. Murray, S. Baraniuk, M. Resnick et al., “Clinical investigation of hospitalized human cases of West Nile virus infection in Houston, Texas, 2002–2004,” Vector-Borne and Zoonotic Diseases, vol. 8, no. 2, pp. 167–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. J. J. Sejvar, M. B. Haddad, B. C. Tierney et al., “Neurologic manifestations and outcome of West Nile virus infection,” The Journal of the American Medical Association, vol. 290, no. 4, pp. 511–515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. D. Weiss, D. Carr, J. Kellachan et al., “Clinical findings of West Nile virus infection in hospitalized patients, New York and New Jersey, 2000,” Emerging Infectious Diseases, vol. 7, no. 4, pp. 654–658, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. C. Klein, I. Kimiagar, L. Pollak et al., “Neurological features of West Nile Virus infection during the 2000 outbreak in a regional hospital in Israel,” Journal of the Neurological Sciences, vol. 200, no. 1-2, pp. 63–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. C. Pepperell, N. Rau, S. Krajden et al., “West Nile virus infection in 2002: morbidity and mortality among patients admitted to hospital in southcentral Ontario,” Canadian Medical Association Journal, vol. 168, no. 11, pp. 1399–1405, 2003. View at Google Scholar · View at Scopus
  147. A. Sribu, C. S. Ceianu, R. I. Panculescu-Gatej et al., “Outbreak of West Nile virus infection in humans, Romania, July to October 2010,” Eurosurveillance, vol. 16, no. 2, 2011. View at Google Scholar · View at Scopus
  148. M. Loeb, S. Hanna, L. Nicolle et al., “Prognosis after West Nile virus infection,” Annals of Internal Medicine, vol. 149, no. 4, pp. 232–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. J. R. Sadek, S. A. Pergam, J. A. Harrington et al., “Persistent neuropsychological impairment associated with West Nile virus infection,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 1, pp. 81–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. R. L. Cook, X. Xu, E. J. Yablonsky et al., “Demographic and clinical factors associated with persistent symptoms after West Nile virus infection,” The American Journal of Tropical Medicine and Hygiene, vol. 83, no. 5, pp. 1133–1136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. M. S. Nolan, A. S. Podoll, A. M. Hause, K. M. Akers, K. W. Finkel, and K. O. Murray, “Prevalence of chronic kidney disease and progression of disease over time among patients enrolled in the Houston west Nile virus cohort,” PLoS ONE, vol. 7, no. 7, Article ID e40374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. T. J. Gray, J. N. Burrow, P. G. Markey et al., “Case report: West nile virus (Kunjin subtype) disease in the Northern Territory of Australia—a case of encephalitis and review of all reported cases,” The American Journal of Tropical Medicine and Hygiene, vol. 85, no. 5, pp. 952–956, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. A. R. McMullen, H. Albayrak, F. J. May, C. T. Davis, D. W. C. Beasley, and A. D. T. Barrett, “Molecular evolution of lineage 2 West Nile virus,” Journal of General Virology, vol. 94, no. 2, pp. 318–325, 2013. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Venter, S. Human, D. Zaayman et al., “Lineage 2 West Nile virus as cause of fatal neurologic disease in horses, South Africa,” Emerging Infectious Diseases, vol. 15, no. 6, pp. 877–884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. M. Venter and R. Swanepoel, “West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in Southern Africa,” Vector-Borne and Zoonotic Diseases, vol. 10, no. 7, pp. 659–664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. D. Zaayman and M. Venter, “West nile virus neurologic disease in Humans, South Africa, September 2008-May 2009,” Emerging Infectious Diseases, vol. 18, no. 12, pp. 2051–2054, 2012. View at Publisher · View at Google Scholar · View at Scopus
  157. K. C. Smithburn and R. H. Jacobs, “Neutralization-tests against neurotropic viruses with sera collected in central Africa,” Journal of Immunology, vol. 44, pp. 9–23, 1942. View at Google Scholar
  158. F. N. Macnamara, D. W. Horn, and J. S. Porterfield, “Yellow fever and other arthropod-borne viruses: a consideration of two serological surveys made in South Western Nigeria,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 53, no. 2, pp. 202–212, 1959. View at Publisher · View at Google Scholar · View at Scopus
  159. R. H. Kokernot, K. C. Smithburn, and M. P. Weinbren, “Neutralizing antibodies to arthropod-borne viruses in human beings and animals in the Union of South Africa,” Journal of Immunology, vol. 77, no. 5, pp. 313–323, 1956. View at Google Scholar · View at Scopus
  160. J. L. Melnick, J. R. Paul, J. T. Riordan, V. H. Barnett, N. Goldblum, and E. Zabin, “Isolation from human sera in Egypt of a virus apparently identical to West Nile virus,” Proceedings of the Society for Experimental Biology and Medicine, vol. 77, no. 4, pp. 661–665, 1951. View at Publisher · View at Google Scholar · View at Scopus
  161. K. C. Smithburn, R. M. Taylor, F. Rizk, and A. Kader, “Immunity to certain arthropod-borne viruses among indigenous residents of Egypt,” The American Journal of Tropical Medicine and Hygiene, vol. 3, no. 1, pp. 9–18, 1954. View at Google Scholar · View at Scopus
  162. R. M. Taylor, H. S. Hurlbut, H. R. Dressler, E. W. Spangler, and D. Thrasher, “Isolation of West Nile virus from Culex mosquitoes,” The Journal of the Egyptian Medical Association, vol. 36, no. 3, pp. 199–208, 1953. View at Google Scholar · View at Scopus
  163. T. Briese, A. Rambaut, M. Pathmajeyan et al., “Phylogenetic analysis of a human isolate from the 2000 Israel West Nile virus epidemic,” Emerging Infectious Diseases, vol. 8, no. 5, pp. 528–531, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Hindiyeh, L. M. Shulman, E. Mendelson, L. Weiss, Z. Grossman, and H. Bin, “Isolation and characterization of West Nile virus from the blood of viremic patients during the 2000 outbreak in Israel,” Emerging Infectious Diseases, vol. 7, no. 4, pp. 748–750, 2001. View at Publisher · View at Google Scholar · View at Scopus
  165. European Centre for Disease Prevention and Control, “Historical data,” 2013, http://ecdc.europa.eu/en/healthtopics/west_nile_fever/West-Nile-fever-maps/Pages/historical-data.aspx.
  166. European Centre for Disease Prevention and Control, “West Nile fever maps,” 2013, http://ecdc.europa.eu/en/healthtopics/west_nile_fever/West-Nile-fever-maps/Pages/index.aspx.
  167. E. Anis, I. Grotto, E. Mendelson et al., “West Nile fever in Israel: the reemergence of an endemic disease,” Journal of Infection, vol. 68, no. 2, pp. 170–175, 2014. View at Publisher · View at Google Scholar · View at Scopus
  168. K. Ergunay, N. Ozer, D. Us et al., “Seroprevalence of West Nile virus and tick-borne encephalitis virus in Southeastern Turkey: first evidence for tick-borne encephalitis virus infections,” Vector-Borne and Zoonotic Diseases, vol. 7, no. 2, pp. 157–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. O. Meço, “West Nile arbovirus antibodies with hemagglutination inhibition (HI) in residents of Southeast Anatolia,” Mikrobiyoloji Bulteni, vol. 11, no. 1, pp. 3–17, 1977. View at Google Scholar · View at Scopus
  170. N. Özer, K. Ergünay, F. Simsek et al., “West Nile virus studies in the Sanliurfa Province of Turkey,” Journal of Vector Ecology, vol. 32, no. 2, pp. 202–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Ozkul, Y. Yildirim, D. Pinar, A. Akcali, V. Yilmaz, and D. Colak, “Serological evidence of West Nile Virus (WNV) in mammalian species in Turkey,” Epidemiology & Infection, vol. 134, no. 4, pp. 826–829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Radda, “Studies on the activity and ecology of arboviruses in Turkey,” Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale, vol. 225, no. 1, pp. 19–26, 1973. View at Google Scholar · View at Scopus
  173. H. Kalaycioglu, G. Korukluoglu, A. Ozkul et al., “Emergence of West Nile virus infections in humans in Turkey, 2010 to 2011,” Eurosurveillance, vol. 17, no. 21, 2012. View at Google Scholar · View at Scopus
  174. K. Naficy and S. Saidi, “Serological survey on viral antibodies in Iran.,” Tropical and Geographical Medicine, vol. 22, no. 2, pp. 183–188, 1970. View at Google Scholar · View at Scopus
  175. S. Chinikar, A. Javadi, B. Ataei et al., “Detection of West Nile virus genome and specific antibodies in Iranian encephalitis patients,” Epidemiology and Infection, vol. 140, no. 8, pp. 1525–1529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  176. F. Ahmadnejad, V. Otarod, M. H. Fallah et al., “Spread of West Nile virus in Iran: a cross-sectional serosurvey in equines, 2008–2009,” Epidemiology and Infection, vol. 139, no. 10, pp. 1587–1593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. A. Batieha, E. K. Saliba, R. Graham, E. Mohareb, Y. Hijazi, and P. Wijeyaratne, “Seroprevalence of West Nile, Rift Valley, and sandfly arboviruses in Hashimiah, Jordan,” Emerging Infectious Diseases, vol. 6, no. 4, pp. 358–362, 2000. View at Publisher · View at Google Scholar · View at Scopus
  178. P. Gallian, P. de Micco, and P. Ghorra, “Seroprevalence of West Nile virus in blood donors at Hôtel Dieu de France, Beirut, Lebanon,” Transfusion, vol. 50, no. 5, pp. 1156–1158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. G. A. Garabedian, R. M. Matossian, and M. N. Musalli, “Serologic evidence of arbovirus infection in Lebanon,” Journal Medical Libanais, vol. 24, no. 4, pp. 339–350, 1971. View at Google Scholar · View at Scopus
  180. S. M. Abutarbush and A. M. Al-Majali, “West Nile virus infection in horses in Jordan: clinical cases, seroprevalence and risk factors,” Transboundary and Emerging Diseases, vol. 61, supplement 1, pp. 1–6, 2014. View at Publisher · View at Google Scholar · View at Scopus
  181. O. Cabre, M. Grandadam, J.-L. Marié et al., “West Nile virus in horses, sub-Saharan Africa,” Emerging Infectious Diseases, vol. 12, no. 12, pp. 1958–1960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  182. R. C. Kading, E. M. Borland, M. Cranfield, and A. M. Powers, “Prevalence of antibodies to alphaviruses and flaviviruses in free-ranging game animals and nonhuman primates in the greater Congo basin,” Journal of Wildlife Diseases, vol. 49, no. 3, pp. 587–599, 2013. View at Publisher · View at Google Scholar · View at Scopus
  183. W. Sghaier, O. Bahri, E. Kedous et al., “Retrospective study of viral causes of central nervous system infections in Tunisia (2003–2009),” Medecine et Sante Tropicales, vol. 22, no. 4, pp. 373–378, 2012. View at Publisher · View at Google Scholar · View at Scopus
  184. J. C. Morrill, B. K. Johnson, C. Hyams et al., “Serological evidence of arboviral infections among humans of coastal Kenya,” Journal of Tropical Medicine and Hygiene, vol. 94, no. 3, pp. 166–168, 1991. View at Google Scholar · View at Scopus
  185. T. B. Hassine, S. Hammami, H. Elghoul, and A. Ghram, “Detection of circulation of West Nile virus in equine in the North-west of Tunisia,” Bulletin de la Societe de Pathologie Exotique, vol. 104, no. 4, pp. 266–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. H. El Rhaffouli, M. El Harrak, C. Lotfi et al., “Serologic evidence of West Nile Virus infection among humans, Morocco,” Emerging Infectious Diseases, vol. 18, no. 5, pp. 880–881, 2012. View at Publisher · View at Google Scholar · View at Scopus
  187. H. Fassil, M. El Harrak, and J.-L. Marié, “Epidemiological aspects of west Nile virus infection in Morocco,” Medecine et sante tropicales, vol. 22, no. 2, pp. 123–125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Gabriel, P. Emmerich, C. Frank et al., “Increase in West Nile virus infections imported to Germany in 2012,” Journal of Clinical Virology, vol. 58, no. 3, pp. 587–589, 2013. View at Publisher · View at Google Scholar · View at Scopus
  189. A. Soliman, E. Mohareb, D. Salman et al., “Studies on West Nile virus infection in Egypt,” Journal of Infection and Public Health, vol. 3, no. 2, pp. 54–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Venter, S. Human, S. Van Niekerk, J. Williams, C. van Eeden, and F. Freeman, “Fatal neurologic disease and abortion in mare infected with lineage 1 West Nile virus, South Africa,” Emerging Infectious Diseases, vol. 17, no. 8, pp. 1534–1536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. S. Larrieu, E. Cardinale, P. Ocquidant et al., “Case report: a fatal neuroinvasive West Nile virus infection in a traveler returning from Madagascar: clinical, epidemiological and veterinary investigations,” American Journal of Tropical Medicine and Hygiene, vol. 89, no. 2, pp. 211–213, 2013. View at Publisher · View at Google Scholar · View at Scopus
  192. E. S. Jentes, J. Robinson, B. W. Johnson et al., “Acute arboviral infections in Guinea, West Africa, 2006,” The American Journal of Tropical Medicine and Hygiene, vol. 83, no. 2, pp. 388–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. W. Wang, F. Sarkodie, K. Danso et al., “Seroprevalence of West Nile virus in Ghana,” Viral Immunology, vol. 22, no. 1, pp. 17–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. J. M. M. Lawson, D. Mounguengui, M. Ondounda, B. N. Edzang, J. Vandji, and R. Tchoua, “A case of meningo-encephalitis due to West Nile virus in Libreville, Gabon,” Medecine Tropicale, vol. 69, no. 5, pp. 501–502, 2009. View at Google Scholar · View at Scopus
  195. M. Baba, C. H. Logue, B. Oderinde et al., “Evidence of arbovirus co-infection in suspected febrile malaria and typhoid patients in Nigeria,” Journal of Infection in Developing Countries, vol. 7, no. 1, pp. 51–59, 2013. View at Google Scholar · View at Scopus
  196. A. G. Fall, A. Diaïté, M. T. Seck et al., “West Nile virus transmission in sentinel chickens and potential mosquito vectors, Senegal River Delta, 2008-2009,” International Journal of Environmental Research and Public Health, vol. 10, no. 10, pp. 4718–4727, 2013. View at Publisher · View at Google Scholar · View at Scopus
  197. M. K. Faulde, M. Spiesberger, and B. Abbas, “Sentinel site-enhanced near-real time surveillance documenting West Nile virus circulation in two Culex mosquito species indicating different transmission characteristics, Djibouti City, Djibouti,” Journal of the Egyptian Society of Parasitology, vol. 42, no. 2, pp. 461–474, 2012. View at Google Scholar · View at Scopus
  198. C. Ochieng, J. Lutomiah, A. Makio et al., “Mosquito-borne arbovirus surveillance at selected sites in diverse ecological zones of Kenya; 2007–2012,” Virology Journal, vol. 10, article 140, 2013. View at Publisher · View at Google Scholar · View at Scopus
  199. K. C. Smithburn, J. A. Kerr, and P. B. Gatne, “Neutralizing antibodies against certain viruses in the sera of residents of India,” The Journal of Immunology, vol. 72, no. 4, pp. 248–257, 1954. View at Google Scholar · View at Scopus
  200. T. R. Rao, “Immunological surveys of arbovirus infections in South-East Asia, with special reference to dengue, chikungunya, and Kyasanur Forest disease,” Bulletin of the World Health Organization, vol. 44, no. 5, pp. 585–591, 1971. View at Google Scholar · View at Scopus
  201. J. Shukla, D. Saxena, S. Rathinam et al., “Molecular detection and characterization of West Nile virus associated with multifocal retinitis in patients from southern India,” International Journal of Infectious Diseases, vol. 16, no. 1, pp. e53–e59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  202. A. Balakrishnan, D. K. Butte, and S. M. Jadhav, “Complete genome sequence of west nile virus isolated from Alappuzha district, Kerala, India,” Genome Announcements, vol. 1, no. 3, 2013. View at Publisher · View at Google Scholar
  203. S. George, S. R. Prasad, J. A. Rao, P. N. Yergolkar, and C. V. Setty, “Isolation of Japanese encephalitis & West Nile viruses from fatal cases of encephalitis in Kolar district of Karnataka,” The Indian Journal of Medical Research, vol. 86, pp. 131–134, 1987. View at Google Scholar · View at Scopus
  204. S. A. Khan, P. Dutta, A. M. Khan et al., “West nile virus infection, Assam, India,” Emerging Infectious Diseases, vol. 17, no. 5, pp. 947–948, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. S. A. Khan, P. Dutta, P. Chowdhury, J. Borah, R. Topno, and J. Mahanta, “Co-infection of arboviruses presenting as acute Encephalitis Syndrome,” Journal of Clinical Virology, vol. 51, no. 1, pp. 5–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. M. A. Darwish, H. Hoogstraal, T. J. Roberts, I. P. Ahmed, and F. Omar, “A sero-epidemiological survey for certain arboviruses (Togaviridae) in Pakistan,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 77, no. 4, pp. 442–445, 1983. View at Publisher · View at Google Scholar · View at Scopus
  207. C. G. Hayes, S. Baqar, T. Ahmed, M. A. Chowdhry, and W. K. Reisen, “West Nile virus in Pakistan. 1. Sero-epidemiological studies in Punjab Province,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 76, no. 4, pp. 431–436, 1982. View at Publisher · View at Google Scholar · View at Scopus
  208. A. Igarashi, M. Tanaka, K. Morita et al., “Detection of West Nile and Japanese encephalitis viral genome sequences in cerebrospinal fluid from acute encephalitis cases in Karachi, Pakistan,” Microbiology and Immunology, vol. 38, no. 10, pp. 827–830, 1994. View at Publisher · View at Google Scholar · View at Scopus
  209. M. Sugamata, A. Ahmed, T. Miura et al., “Seroepidemiological study of infection with West Nile virus in Karachi, Pakistan, in 1983 and 1985,” Journal of Medical Virology, vol. 26, no. 3, pp. 243–247, 1988. View at Publisher · View at Google Scholar · View at Scopus
  210. Centers for Disease Control and Prevention, International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates, Centers for Disease Control and Prevention, Atlanta, Ga, USA, 2014.
  211. C. Y. Ching, J. Casals, E. T. Bowen et al., “Arbovirus infections in Sarawak: the isolation of Kunjin virus from mosquitoes of the Culex pseudovishnui group.,” Annals of Tropical Medicine and Parasitology, vol. 64, no. 3, pp. 263–268, 1970. View at Google Scholar · View at Scopus
  212. N. Karabatsos, American Society of Tropical Medicine and Hygiene, American Committee on Arthropod-borne Viruses, and and Rockefeller Foundation, International Catalogue of Arboviruses, Including Certain Other Viruses of Vertebrates, American Society of Tropical Medicine and Hygiene for The Subcommittee on Information Exchange of the American Committee on Arthropod-borne Viruses, 1985.
  213. W. Rutvisuttinunt, S. K. Shrestha, P. Chinnawirotpisan et al., “Evidence of West Nile virus infection in Nepal,” in Proceedings of the 62nd American Society of Tropical Medicine and Hygiene Annual Meeting, Washington, DC, USA, November 2013.
  214. X. L. Li, S. H. Fu, W. B. Liu et al., “West nile virus infection in Xinjiang, China,” Vector-Borne and Zoonotic Diseases, vol. 13, no. 2, pp. 131–133, 2013. View at Publisher · View at Google Scholar · View at Scopus
  215. Q. R. Yang, “A study on arboviruse antibodies of birds in the Niao-Diao-Mountain area Eryan-county of Yunnan province,” Zhong Hua Liu Xing Bing Xue Za Zhi, vol. 9, no. 3, pp. 150–153, 1988. View at Google Scholar · View at Scopus
  216. D. L. Lan, C. S. Wang, B. Deng et al., “Serological investigations on West Nile virus in birds and horses in Shanghai, China,” Epidemiology and Infection, vol. 141, no. 3, pp. 596–600, 2013. View at Publisher · View at Google Scholar · View at Scopus
  217. D. Lan, W. Ji, D. Yu et al., “Serological evidence of West Nile virus in dogs and cats in China,” Archives of Virology, vol. 156, no. 5, pp. 893–895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  218. J. Y. Yeh, J. Y. Park, and E. N. Ostlund, “Serologic evidence of West Nile Virus in wild ducks captured in major inland resting sites for migratory waterfowl in South Korea,” Veterinary Microbiology, vol. 154, no. 1-2, pp. 96–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  219. R. L. Doherty, J. G. Carley, M. J. Mackerras, and E. N. Marks, “Studies of arthropod-borne virus infections in Queensland. III. Isolation and characterization of virus strains from wild-caught mosquitoes in North Queensland,” The Australian Journal of Experimental Biology and Medical Science, vol. 41, pp. 17–39, 1963. View at Publisher · View at Google Scholar · View at Scopus
  220. F. X. Heinz, M. S. Collett, R. H. Purcel et al., “Family: flaviviridae,” in Virus Taxonomy: Classification and Nomenclature of Viruses, M. H. V. van Regenmortel, M. F. Fauquet, D. H. L. Bishop, R. J. M. Moormann, and etal, Eds., pp. 859–878, Academic Press, San Diego, Calif, USA, 1st edition, 2000. View at Google Scholar
  221. R. C. Russell and D. E. Dwyer, “Arboviruses associated with human disease in Australia,” Microbes and Infection, vol. 2, no. 14, pp. 1693–1704, 2000. View at Publisher · View at Google Scholar · View at Scopus
  222. M. J. Frost, J. Zhang, J. H. Edmonds et al., “Characterization of virulent West Nile virus Kunjin strain, Australia, 2011,” Emerging Infectious Diseases, vol. 18, no. 5, pp. 792–800, 2012. View at Publisher · View at Google Scholar · View at Scopus
  223. R. A. Mann, M. Fegan, K. O'Riley, J. Motha, and S. Warner, “Molecular characterization and phylogenetic analysis of Murray Valley encephalitis virus and West Nile virus (Kunjin subtype) from an arbovirus disease outbreak in horses in Victoria, Australia, in 2011,” Journal of Veterinary Diagnostic Investigation, vol. 25, no. 1, pp. 35–44, 2013. View at Publisher · View at Google Scholar · View at Scopus
  224. N. A. Prow, “The changing epidemiology of Kunjin virus in Australia,” International Journal of Environmental Research and Public Health, vol. 10, no. 12, pp. 6255–6272, 2013. View at Publisher · View at Google Scholar · View at Scopus
  225. S. A. Williams, J. S. Richards, H. M. Faddy et al., “Low seroprevalence of murray valley encephalitis and kunjin viruses in an opportunistic serosurvey, Victoria 2011,” Australian and New Zealand Journal of Public Health, vol. 37, no. 5, pp. 427–433, 2013. View at Publisher · View at Google Scholar · View at Scopus
  226. V. Bardos, J. Adamcova, S. Dedei, N. Gjini, B. Rosicky, and A. Simkova, “Neutralizing antibodies against some neurotropic viruses determined in human sera in Albania,” Journal of Hygiene, Epidemiology, Microbiology, and Immunology, vol. 3, pp. 277–282, 1959. View at Google Scholar · View at Scopus
  227. Z. Hubálek and J. Halouzka, “West Nile fever—a reemerging mosquito-borne viral disease in Europe,” Emerging Infectious Diseases, vol. 5, no. 5, pp. 643–650, 1999. View at Publisher · View at Google Scholar · View at Scopus
  228. A. R. Filipe, “Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes,” Acta Virologica, vol. 16, no. 4, article 361, 1972. View at Google Scholar · View at Scopus
  229. E. Ernek, O. Kozuch, J. Nosek, J. Teplan, and C. Folk, “Arboviruses in birds captured in Slovakia,” Journal of Hygiene Epidemiology Microbiology and Immunology, vol. 21, no. 3, pp. 353–359, 1977. View at Google Scholar · View at Scopus
  230. Z. Hubalek, J. Halouzka, Z. Juricova, and O. Sebesta, “First isolation of mosquito-borne west nile virus in the Czech Republic,” Acta Virologica, vol. 42, no. 2, pp. 119–120, 1998. View at Google Scholar · View at Scopus
  231. E. Molnár, M. S. Gulyás, L. Kubinyi et al., “Studies on the occurrence of tick-borne encephalitis in Hungary,” Acta veterinaria Academiae Scientiarum Hungaricae, vol. 26, no. 4, pp. 419–437, 1976. View at Google Scholar · View at Scopus
  232. H. G. Zeller and I. Schuffenecker, “West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 23, no. 3, pp. 147–156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  233. P. Couissinier-Paris, “West Nile virus in Europe and Africa: still minor pathogen, or potential threat to public health?” Bulletin de la Societe de Pathologie Exotique, vol. 99, no. 5, pp. 348–354, 2006. View at Google Scholar · View at Scopus
  234. T. Bakonyi, E. Ferenczi, K. Erdélyi et al., “Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009,” Veterinary Microbiology, vol. 165, no. 1-2, pp. 61–70, 2013. View at Publisher · View at Google Scholar · View at Scopus
  235. P. Calistri, A. Giovannini, Z. Hubalek et al., “Epidemiology of West Nile in Europe and in the Mediterranean basin,” The Open Virology Journal, vol. 4, pp. 29–37, 2010. View at Google Scholar
  236. B. Murgue, S. Murri, S. Zientara, B. Durand, J.-P. Durand, and H. Zeller, “West Nile outbreak in horses in Southern France, 2000: the return after 35 years,” Emerging Infectious Diseases, vol. 7, no. 4, pp. 692–696, 2001. View at Publisher · View at Google Scholar · View at Scopus
  237. A. Mailles, P. Dellamonica, H. Zeller et al., “Human and equine West Nile virus infections in France, August-September 2003,” Eurosurveillance, vol. 7, no. 43, article 1, 2003, http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=2312. View at Google Scholar
  238. B. Durand, G. Dauphin, H. Zeller et al., “Serosurvey for West Nile virus in horses in southern France,” Veterinary Record, vol. 157, no. 22, pp. 711–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  239. G. L. Autorino, A. Battisti, V. Deubel et al., “West Nile virus epidemic in horses, Tuscany region, Italy,” Emerging Infectious Diseases, vol. 8, no. 12, pp. 1372–1378, 2002. View at Publisher · View at Google Scholar · View at Scopus
  240. G. Rezza, “Chikungunya and West Nile virus outbreaks: what is happening in north-eastern Italy,” European Journal of Public Health, vol. 19, no. 3, pp. 236–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  241. C. Rizzo, P. Salcuni, L. Nicoletti et al., “Epidemiological surveillance of West Nile neuroinvasive diseases in Italy, 2008 to 2011,” Eurosurveillance, vol. 17, no. 20, 2012. View at Google Scholar
  242. A. E. Platonov, V. A. Tolpin, K. A. Gridneva et al., “The incidence of west nile disease in russia in relation to climatic and environmental factors,” International Journal of Environmental Research and Public Health, vol. 11, no. 2, pp. 1211–1232, 2014. View at Publisher · View at Google Scholar · View at Scopus
  243. O. Engler, G. Savini, A. Papa et al., “European surveillance for West Nile virus in mosquito populations,” International Journal of Environmental Research and Public Health, vol. 10, no. 10, pp. 4869–4895, 2013. View at Publisher · View at Google Scholar · View at Scopus
  244. L. Barzon, M. Pacenti, E. Franchin et al., “Large human outbreak of West Nile virus infection in north-eastern Italy in 2012,” Viruses, vol. 5, no. 11, pp. 2825–2839, 2013. View at Publisher · View at Google Scholar · View at Scopus
  245. L. Barzon, M. Pacenti, E. Franchin et al., “The complex epidemiological scenario of West Nile virus in Italy,” International Journal of Environmental Research and Public Health, vol. 10, no. 10, pp. 4669–4689, 2013. View at Publisher · View at Google Scholar · View at Scopus
  246. L. Barzon, M. Pacenti, E. Franchin et al., “Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013,” Eurosurveillance, vol. 18, no. 38, Article ID 20597, 2013. View at Google Scholar · View at Scopus
  247. C. Napoli, A. Bella, S. Declich et al., “Integrated human surveillance systems of West Nile virus infections in Italy: the 2012 experience,” International Journal of Environmental Research and Public Health, vol. 10, no. 12, pp. 7180–7192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  248. A. Papa, E. Papadopoulou, E. Gavana, S. Kalaitzopoulou, and S. Mourelatos, “Detection of west nile virus lineage 2 in culex mosquitoes, Greece, 2012,” Vector-Borne and Zoonotic Diseases, vol. 13, no. 9, pp. 682–684, 2013. View at Publisher · View at Google Scholar · View at Scopus
  249. I. Jesús-de La Calle, M. J. Espinosa-García, S. Pérez-Ramos, and E. Cruz-Rosales, “First confirmed cases of human meningoencephalitis due to West Nile virus in Andalusia, Spain,” Enfermedades Infecciosas y Microbiologia Clinica, vol. 30, no. 7, pp. 426–427, 2012. View at Publisher · View at Google Scholar · View at Scopus
  250. K. Stiasny, S. W. Aberle, and F. X. Heinzl, “Retrospective identification of human cases of west nile virus infection in Austria (2009 to 2010) by serological differentiation from Usutu and other flavivirus infections,” Eurosurveillance, vol. 18, no. 43, 2013. View at Google Scholar · View at Scopus
  251. E. Merdić, L. Perić, N. Pandak et al., “West Nile virus outbreak in humans in Croatia, 2012,” Collegium Antropologicum, vol. 37, no. 3, pp. 943–947, 2013. View at Google Scholar · View at Scopus
  252. N. Popovic, B. Milosevic, A. Urosevic et al., “Outbreak of West Nile virus infection among humans in Serbia,” Eurosurveillance, vol. 18, no. 43, 2013. View at Google Scholar
  253. I. Pem-Novosel, T. Vilibic-Cavlek, I. Gjenero-Margan et al., “First outbreak of west nile virus neuroinvasive disease in humans, Croatia, 2012,” Vector-Borne and Zoonotic Diseases, vol. 14, no. 1, pp. 82–84, 2014. View at Publisher · View at Google Scholar · View at Scopus
  254. A. Esteves, A. P. G. Almeida, R. P. Galão et al., “West Nile virus in Southern Portugal, 2004,” Vector-Borne and Zoonotic Diseases, vol. 5, no. 4, pp. 410–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  255. V. Sambri, M. Capobianchi, R. Charrel et al., “West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment, and prevention,” Clinical Microbiology and Infection, vol. 19, no. 8, pp. 699–704, 2013. View at Publisher · View at Google Scholar · View at Scopus
  256. I. C. Kurolt, V. Krajinovic, A. Topic, I. Kuzman, B. Barsic, and A. Markotic, “First molecular analysis of West Nile virus during the 2013 outbreak in Croatia,” Virus Research, vol. 189, pp. 63–66, 2014. View at Publisher · View at Google Scholar
  257. T. Petrović, A. B. Blázquez, D. Lupulović et al., “Monitoring West Nile virus (WNV) infection in wild birds in Serbia during 2012: first isolation and characterisation of WNV strains from Serbia,” Eurosurveillance, vol. 18, no. 44, 2013. View at Google Scholar · View at Scopus
  258. G. Savini, G. Capelli, F. Monaco et al., “Evidence of West Nile virus lineage 2 circulation in Northern Italy,” Veterinary Microbiology, vol. 158, no. 3-4, pp. 267–273, 2012. View at Publisher · View at Google Scholar · View at Scopus
  259. G. Valiakos, A. Touloudi, C. Iacovakis et al., “Molecular detection and phylogenetic analysis of West Nile virus lineage 2 in sedentary wild birds (Eurasian magpie), Greece, 2010,” Eurosurveillance, vol. 16, no. 18, 2011. View at Google Scholar · View at Scopus
  260. E. Wodak, S. Richter, Z. Bagó et al., “Detection and molecular analysis of West Nile virus infections in birds of prey in the Eastern part of Austria in 2008 and 2009,” Veterinary Microbiology, vol. 149, no. 3-4, pp. 358–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  261. A. C. Brault, C. Y.-H. Huang, S. A. Langevin et al., “A single positively selected West Nile viral mutation confers increased virogenesis in American crows,” Nature Genetics, vol. 39, no. 9, pp. 1162–1166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  262. A. Papa, T. Bakonyi, K. Xanthopoulou, A. Vázquez, A. Tenorio, and N. Nowotny, “Genetic characterization of west nile virus lineage 2, Greece, 2010,” Emerging Infectious Diseases, vol. 17, no. 5, pp. 920–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  263. D. Morgan, “Control of arbovirus infections by a coordinated response: West Nile Virus in England and Wales,” FEMS Immunology and Medical Microbiology, vol. 48, no. 3, pp. 305–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  264. S. Linke, M. Niedrig, A. Kaiser et al., “Serologic evidence of West Nile virus infections in wild birds captured in Germany,” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 2, pp. 358–364, 2007. View at Google Scholar · View at Scopus
  265. C. Laübli, S. Neves da Costa Monteiro Pires, C. Griot, and E. Breidenbach, “West nile virus epizootic situation in Switzerland,” 2006, http://www.bvet.admin.ch/gesundheit_tiere/00315/00317/02600/index.html.
  266. V. A. Brugman, D. L. Horton, L. P. Phipps et al., “Epidemiological perspectives on West Nile virus surveillance in wild birds in Great Britain,” Epidemiology and Infection, vol. 141, no. 6, pp. 1134–1142, 2013. View at Publisher · View at Google Scholar · View at Scopus
  267. A. Buckley, A. Dawson, S. R. Moss, S. A. Hinsley, P. E. Bellamy, and E. A. Gould, “Serological evidence of West Nile virus, Usutu virus and Sindbis virus infection of birds in the UK,” Journal of General Virology, vol. 84, no. 10, pp. 2807–2817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  268. A. Buckley, A. Dawson, and E. A. Gould, “Detection of seroconversion to West Nile virus, Usutu virus and Sindbis virus in UK sentinel chickens,” Virology Journal, vol. 3, article 71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  269. L. P. Phipps, J. P. Duff, J. P. Holmes et al., “Surveillance for West Nile virus in British birds (2001 to 2006),” The Veterinary Record, vol. 162, no. 13, pp. 413–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  270. Z. Hubálek, E. Wegner, J. Halouzka et al., “Serologic survey of potential vertebrate hosts for West Nile virus in Poland,” Viral Immunology, vol. 21, no. 2, pp. 247–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  271. R. N. Charrel, A. C. Brault, P. Gallian et al., “Evolutionary relationship between Old World West Nile virus strains: evidence for viral gene flow between Africa, the Middle East, and Europe,” Virology, vol. 315, no. 2, pp. 381–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  272. “Human West Nile virus surveillance—Connecticut, New Jersey, and New York, 2000,” Morbidity and Mortality Weekly Report, vol. 50, no. 14, pp. 265–268, 2001.
  273. C. T. Davis, G. D. Ebel, R. S. Lanciotti et al., “Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype,” Virology, vol. 342, no. 2, pp. 252–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  274. G. D. Ebel, J. Carricaburu, D. Young, K. A. Bernard, and L. D. Kramer, “Genetic and phenotypic variation of West Nile virus in New York, 2000–2003,” The American Journal of Tropical Medicine and Hygiene, vol. 71, no. 4, pp. 493–500, 2004. View at Google Scholar · View at Scopus
  275. R. M. Moudy, M. A. Meola, L.-L. L. Morin, G. D. Ebel, and L. D. Kramer, “A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes,” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 2, pp. 365–370, 2007. View at Google Scholar · View at Scopus
  276. K. W. Snapinn, E. C. Holmes, D. S. Young, K. A. Bernard, L. D. Kramer, and G. D. Ebel, “Declining growth rate of West Nile virus in North America,” Journal of Virology, vol. 81, no. 5, pp. 2531–2534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  277. O. Komar, M. B. Robbins, G. G. Contreras et al., “West Nile virus survey of birds and mosquitoes in the Dominican Republic,” Vector-Borne and Zoonotic Diseases, vol. 5, no. 2, pp. 120–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  278. Centers for Disease Control and Prevention, “West Nile virus statistics and maps,” 2013, http://www.cdc.gov/westnile/statsMaps/.
  279. L. R. Petersen, P. J. Carson, B. J. Biggerstaff, B. Custer, S. M. Borchardt, and M. P. Busch, “Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010,” Epidemiology & Infection, vol. 141, no. 3, pp. 591–595, 2013. View at Publisher · View at Google Scholar · View at Scopus
  280. P. Sockett, “The incursion and expansion of West Nile Virus into Canada,” 2005, http://www.webbertraining.com/files/library/docs/26.pdf.
  281. Public Health Agency of Canada, “Summary of Human Surveillance Table: (2008–2012)(2002–2007),” 2013, http://www.phac-aspc.gc.ca/wnv-vwn/mon-hmnsurv-archive-eng.php#a2008_12.
  282. D. Roth, B. Henry, S. Mak et al., “West Nile Virus range expansion into British Columbia,” Emerging Infectious Diseases, vol. 16, no. 8, pp. 1251–1258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  283. Public Health Agency of Canada, “Human Surveillance,” 2013, http://www.phac-aspc.gc.ca/wnv-vwn/mon-hmnsurv-eng.php.
  284. Caribbean Epidemiology Centre, West Nile Virus in Cayman Islands, Caribbean Epidemiology Centre, Trinidad and Tobago, Spain, 2001.
  285. A. P. Dupuis II, P. P. Marra, and L. D. Kramer, “Serologic evidence of West Nile virus transmission, Jamaica, West Indies,” Emerging Infectious Diseases, vol. 9, no. 7, pp. 860–863, 2003. View at Publisher · View at Google Scholar · View at Scopus
  286. O. Komar, M. B. Robbins, K. Klenk et al., “West Nile virus transmission in resident birds, Dominican Republic,” Emerging Infectious Diseases, vol. 9, no. 10, pp. 1299–1302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  287. R. Quirin, M. Salas, S. Zientara et al., “West Nile Virus, Guadeloupe,” Emerging Infectious Diseases, vol. 10, no. 4, pp. 706–708, 2004. View at Publisher · View at Google Scholar · View at Scopus
  288. Caribbean Epidemiology Centre, “Recommendations for West Nile Surveillance in the Caribbean,” 2004, http://www.carec.org/west-nile-2004/.
  289. N. Komar and G. G. Clark, “West Nile virus activity in Latin America and the Caribbean,” Revista Panamericana de Salud Publica, vol. 19, no. 2, pp. 112–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  290. M. Pupo, M. G. Guzmán, R. Fernández et al., “West Nile virus infection in humans and horses, Cuba,” Emerging Infectious Diseases, vol. 12, no. 6, pp. 1022–1024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  291. A. P. Dupuis II, P. P. Marra, R. Reitsma, M. J. Jones, K. L. Louie, and L. D. Kramer, “Short report: serologic evidence for West Nile virus transmission in Puerto Rico and Cuba,” The American Journal of Tropical Medicine and Hygiene, vol. 73, no. 2, pp. 474–476, 2005. View at Google Scholar · View at Scopus
  292. E. A. Hunsperger, K. L. McElroy, K. Bessoff, C. Colón, R. Barrera, and J. L. Muñoz-Jordán, “West Nile virus from blood donors, vertebrates, and mosquitoes, Puerto Rico, 2007,” Emerging Infectious Diseases, vol. 15, no. 8, pp. 1298–1300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  293. R. Barrera, E. Hunsperger, J. L. Muñoz-Jordán et al., “Short report: first isolation of West Nile virus in the Caribbean,” The American Journal of Tropical Medicine and Hygiene, vol. 78, no. 4, pp. 666–668, 2008. View at Google Scholar · View at Scopus
  294. M. E. Beatty, E. Hunsperger, E. Long et al., “Mosquitoborne infections after Hurricane Jeanne, Haiti, 2004,” Emerging Infectious Diseases, vol. 13, no. 2, pp. 308–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  295. J. G. Estrada-Franco, R. Navarro-Lopez, D. W. C. Beasley et al., “West Nile virus in Mexico: evidence of widespread circulation since July 2002,” Emerging Infectious Diseases, vol. 9, no. 12, pp. 1604–1607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  296. D. Elizondo-Quiroga, C. T. Davis, I. Fernandez-Salas et al., “West nile virus isolation in human and mosquitoes, Mexico,” Emerging Infectious Diseases, vol. 11, no. 9, pp. 1449–1452, 2005. View at Google Scholar · View at Scopus
  297. C. Rios-Ibarra, B. J. Blitvich, J. Farfan-Ale et al., “Fatal human case of West Nile virus disease, Mexico, 2009,” Emerging Infectious Diseases, vol. 16, no. 4, pp. 741–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  298. S. Guerrero-Sánchez, S. Cuevas-Romero, N. M. Nemeth et al., “West Nile virus infection of birds, Mexico,” Emerging Infectious Diseases, vol. 17, no. 12, pp. 2245–2252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  299. D. W. C. Beasley, C. T. Davis, J. Estrada-Franco et al., “Genome sequence and attenuating mutations in Nile virus isolate from Mexico,” Emerging Infectious Diseases, vol. 10, no. 12, pp. 2221–2224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  300. A. C. Brault, S. A. Langevin, W. N. Ramey et al., “Reduced avian virulence and viremia of West Nile virus isolates from Mexico and Texas,” The American Journal of Tropical Medicine and Hygiene, vol. 85, no. 4, pp. 758–767, 2011. View at Publisher · View at Google Scholar · View at Scopus
  301. L. Cruz, V. M. Cardenas, M. Abarca et al., “Short report: serological evidence of West Nile virus activity in El Salvador,” The American Journal of Tropical Medicine and Hygiene, vol. 72, no. 5, pp. 612–615, 2005. View at Google Scholar · View at Scopus
  302. M. E. Morales-Betoulle, N. Komar, N. A. Panella et al., “West Nile virus ecology in a tropical ecosystem in Guatemala,” The American Journal of Tropical Medicine and Hygiene, vol. 88, no. 1, pp. 116–126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  303. J. Hobson-Peters, C. Arévalo, W. Y. Cheah et al., “Detection of antibodies to West Nile virus in horses, Costa Rica, 2004,” Vector-Borne and Zoonotic Diseases, vol. 11, no. 8, pp. 1081–1084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  304. L. Berrocal, J. Peña, M. González, and S. Mattar, “West Nile virus; ecology and epidemiology of an emerging pathogen in Colombia,” Revista de Salud Publica, vol. 8, no. 2, pp. 218–228, 2006. View at Google Scholar · View at Scopus
  305. S. Mattar, N. Komar, G. Young, J. Alvarez, and M. Gonzalez, “Seroconversion for West Nile and St. Louis encephalitis viruses among sentinel horses in Colombia,” Memorias do Instituto Oswaldo Cruz, vol. 106, no. 8, pp. 976–979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  306. M. A. Morales, M. Barrandeguy, C. Fabbri et al., “West Nile virus isolation from equines in Argentina, 2006,” Emerging Infectious Diseases, vol. 12, no. 10, pp. 1559–1561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  307. L. A. Diaz, N. Komar, A. Visintin et al., “West Nile virus in birds, Argentina,” Emerging Infectious Diseases, vol. 14, no. 4, pp. 689–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  308. I. Bosch, F. Herrera, J.-C. Navarro et al., “West Nile virus, Venezuela,” Emerging Infectious Diseases, vol. 13, no. 4, pp. 651–653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  309. A. Pauvolid-Corrêa, M. A. Morales, S. Levis et al., “Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal,” Memorias do Instituto Oswaldo Cruz, vol. 106, no. 4, pp. 467–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  310. T. Ometto, E. L. Durigon, J. de Araujo et al., “West nile virus surveillance, Brazil, 2008–2010,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 107, no. 11, Article ID trt081, pp. 723–730, 2013. View at Publisher · View at Google Scholar · View at Scopus
  311. V. Melandri, A. É. Guimarães, N. Komar et al., “Serological detection of West Nile virus in horses and chicken from Pantanal, Brazil,” Memorias do Instituto Oswaldo Cruz, vol. 107, no. 8, pp. 1073–1075, 2012. View at Publisher · View at Google Scholar · View at Scopus
  312. A. Pauvolid-Correa, Z. Campos, R. Juliano, J. Velez, R. M. Nogueira, and N. Komar, “Serological evidence of widespread circulation of West Nile virus and other flaviviruses in equines of the Pantanal, Brazil,” PLoS Neglected Tropical Diseases, vol. 8, Article ID e2706, 2014. View at Google Scholar
  313. J. R. Silva, L. C. Medeiros, V. P. Reis et al., “Serologic survey of West Nile virus in horses from Central-West, Northeast and Southeast Brazil,” Memórias do Instituto Oswaldo Cruz, vol. 108, no. 7, pp. 921–923, 2013. View at Google Scholar
  314. C. N. Soares, M. J. C. Castro, J. M. Peralta, M. R. G. de Freitas, and M. Puccioni-Sohler, “Is west nile virus a potential cause of central nervous system infection in Brazil?” Arquivos de Neuro-Psiquiatria, vol. 68, no. 5, pp. 761–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  315. B. M. Forshey, C. Guevara, V. A. Laguna-Torres et al., “Arboviral etiologies of acute febrile illnesses in western south America, 2000–2007,” PLoS Neglected Tropical Diseases, vol. 4, no. 8, article e787, 2010. View at Publisher · View at Google Scholar · View at Scopus
  316. M. Mazzei, G. Savini, D. G. Annapia et al., “West Nile seroprevalence study in Bolivian horses, 2011,” Vector-Borne and Zoonotic Diseases, vol. 13, no. 12, pp. 894–896, 2013. View at Publisher · View at Google Scholar · View at Scopus
  317. J. E. Osorio, K. A. Ciuoderis, J. G. Lopera et al., “Characterization of West Nile viruses isolated from captive American flamingoes (Phoenicopterus ruber) in Medellin, Colombia,” The American Journal of Tropical Medicine and Hygiene, vol. 87, no. 3, pp. 565–572, 2012. View at Publisher · View at Google Scholar · View at Scopus