Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 427814, 6 pages
http://dx.doi.org/10.1155/2015/427814
Review Article

Interaction between Flavivirus and Cytoskeleton during Virus Replication

Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 19 March 2015; Revised 30 June 2015; Accepted 28 July 2015

Academic Editor: Christophe N. Peyrefitte

Copyright © 2015 Kar Yue Foo and Hui-Yee Chee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Smit, B. Moesker, I. Rodenhuis-Zybert, and J. Wilschut, “Flavivirus cell entry and membrane fusion,” Viruses, vol. 3, no. 2, pp. 160–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. S. Mackenzie, D. J. Gubler, and L. R. Petersen, “Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses,” Nature Medicine, vol. 10, supplement 12, pp. S98–S109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Gubler, “Dengue/dengue haemorrhagic fever: history and current status,” in New Treatment Strategies for Dengue and Other Flaviviral Diseases, pp. 3–22, Wiley-Blackwell, 2006. View at Google Scholar
  4. B. D. Lindenbach, C. L. Murray, H.-J. Thiel, and C. M. Rice, “Flaviviridae,” in Fields Virology, D. M. Knipe and P. M. Howley, Eds., pp. 712–746, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2013. View at Google Scholar
  5. R. B. Luftig, “Does the cytoskeleton play a significant role in animal virus replication?” Journal of Theoretical Biology, vol. 99, no. 1, pp. 173–191, 1982. View at Publisher · View at Google Scholar · View at Scopus
  6. L. G. Payne and K. Kristensson, “The effect of cytochalasin D and monensin on enveloped vaccinia virus release,” Archives of Virology, vol. 74, no. 1, pp. 11–20, 1982. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Satake and R. B. Luftig, “Microtubule-depolymerizing agents inhibit Moloney murine leukaemia virus production,” Journal of General Virology, vol. 58, no. part 2, pp. 339–349, 1982. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. H. Chu and M. L. Ng, “Trafficking mechanism of West Nile (Sarafend) virus structural proteins,” Journal of Medical Virology, vol. 67, no. 1, pp. 127–136, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Chen, N. Gao, J.-L. Wang, Y.-P. Tian, Z.-T. Chen, and J. An, “Vimentin is required for dengue virus serotype 2 infection but microtubules are not necessary for this process,” Archives of Virology, vol. 153, no. 9, pp. 1777–1781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ploubidou and M. Way, “Viral transport and the cytoskeleton,” Current Opinion in Cell Biology, vol. 13, no. 1, pp. 97–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. N. L. Kallewaard, A. L. Bowen, and J. E. Crowe Jr., “Cooperativity of actin and microtubule elements during replication of respiratory syncytial virus,” Virology, vol. 331, no. 1, pp. 73–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Cudmore, I. Reckmann, and W. Michael, “Viral manipulations of the actin cytoskeleton,” Trends in Microbiology, vol. 5, no. 4, pp. 142–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Sodeik, “Mechanisms of viral transport in the cytoplasm,” Trends in Microbiology, vol. 8, no. 10, pp. 465–472, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. C. S. H. Teo and J. J. H. Chu, “Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein,” Journal of Virology, vol. 88, no. 4, pp. 1897–1913, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Potokar, M. Korva, J. Jorgačevski, T. Avšič-Županc, R. Zorec, and H. Favoreel, “Tick-borne encephalitis virus infects rat astrocytes but does not affect their viability,” PLoS ONE, vol. 9, no. 1, Article ID e86219, 2014. View at Publisher · View at Google Scholar
  16. S. Sripada and C. Dayaraj, “Viral interactions with intermediate filaments: paths less explored,” Cell Health and Cytoskeleton, vol. 2, no. 1, pp. 1–7, 2010. View at Google Scholar · View at Scopus
  17. M. L. Ng, J. Howe, V. Sreenivasan, and J. J. L. Mulders, “Flavivirus West Nile (Sarafend) egress at the plasma membrane,” Archives of Virology, vol. 137, no. 3-4, pp. 303–313, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Yang, L. Zou, Z. Hu et al., “Identification and characterization of a 43 kDa actin protein involved in the DENV-2 binding and infection of ECV304 cells,” Microbes and Infection, vol. 15, no. 4, pp. 310–318, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Makino, T. Suzuki, R. Hasebe et al., “Establishment of tracking system for West Nile virus entry and evidence of microtubule involvement in particle transport,” Journal of Virological Methods, vol. 195, pp. 250–257, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Kanlaya, S.-N. Pattanakitsakul, S. Sinchaikul, S.-T. Chen, and V. Thongboonkerd, “Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration,” Journal of Proteome Research, vol. 8, no. 5, pp. 2551–2562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-L. Wang, J.-L. Zhang, W. Chen et al., “Roles of small GTPase RAc1 in the regulation of actin cytoskeleton during dengue virus infection,” PLoS Neglected Tropical Diseases, vol. 4, no. 8, article e809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Talavera, A. M. Castillo, M. C. Dominguez, A. Escobar Gutierrez, and I. Meza, “IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers,” Journal of General Virology, vol. 85, no. 7, pp. 1801–1813, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature, vol. 463, no. 7280, pp. 485–492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Y. Kim and C. M. Nelson, “Extracellular matrix and cytoskeletal dynamics during branching morphogenesis,” Organogenesis, vol. 8, no. 2, pp. 56–64, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Lodish, A. Berk, S. L. Zipursky et al., “The actin cytoskeleton,” in Molecular Cell Biology, W. H. Freeman, Ed., Macmillan Education, New York, NY, USA, 2000. View at Google Scholar
  26. P. Draber, V. Sulimenko, and E. Draberova, “Cytoskeleton in mast cell signaling,” Frontiers in Immunology, vol. 3, article 130, 2012. View at Google Scholar
  27. H. Lodish, A. Berk, S. L. Zipursky et al., “Microtubule structure,” in Molecular Cell Biology, W. H. Freeman, Ed., Macmillan Education, New York, NY, USA, 2000. View at Google Scholar
  28. E. Nogales and H.-W. Wang, “Structural intermediates in microtubule assembly and disassembly: how and why?” Current Opinion in Cell Biology, vol. 18, no. 2, pp. 179–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Lodish, A. Berk, S. L. Zipursky et al., “Intermediate filaments,” in Molecular Cell Biology, W. H. Freeman, Ed., Macmillan Education, New York, NY, USA, 2000. View at Google Scholar
  30. S. Kim and P. A. Coulombe, “Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm,” Genes & Development, vol. 21, no. 13, pp. 1581–1597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Robert, H. Herrmann, M. W. Davidson, and V. I. Gelfand, “Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases,” The FASEB Journal, vol. 28, no. 7, pp. 2879–2890, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. K. J. Green, M. Böhringer, T. Gocken, and J. C. R. Jones, “Intermediate filament associated proteins,” Advances in Protein Chemistry, vol. 70, pp. 143–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. L. Ng and S. S. Hong, “Flavivirus infection: essential ultrastructural changes and association of Kunjin virus NS3 protein with microtubules,” Archives of Virology, vol. 106, no. 1-2, pp. 103–120, 1989. View at Publisher · View at Google Scholar · View at Scopus
  34. T. M. Colpitts, J. Cox, A. Nguyen, F. Feitosa, M. N. Krishnan, and E. Fikrig, “Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector,” Virology, vol. 417, no. 1, pp. 179–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C.-T. Chiou, C.-C. A. Hu, P.-H. Chen, C.-L. Liao, Y.-L. Lin, and J.-J. Wang, “Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein,” Journal of General Virology, vol. 84, no. 10, pp. 2795–2805, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. H. Chu and M. L. Ng, “Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway,” Journal of Virology, vol. 78, no. 19, pp. 10543–10555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Kalia, R. Khasa, M. Sharma, M. Nain, and S. Vrati, “Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism,” Journal of Virology, vol. 87, no. 1, pp. 148–162, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Shrivastava, S. Sripada, J. Kaur, P. S. Shah, and D. Cecilia, “Insights into the internalization and retrograde trafficking of dengue 2 virus in BHK-21 cells,” PLoS ONE, vol. 6, no. 10, Article ID e25229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J.-B. Brault, M. Kudelko, P.-O. Vidalain, F. Tangy, P. Desprès, and N. Pardigon, “The interaction of flavivirus M protein with light chain Tctex-1 of human dynein plays a role in late stages of virus replication,” Virology, vol. 417, no. 2, pp. 369–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H.-Y. Chee and S. AbuBakar, “Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry,” Biochemical and Biophysical Research Communications, vol. 320, no. 1, pp. 11–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. X.-F. Xu, Z.-T. Chen, N. Gao, J.-L. Zhang, and J. An, “Myosin Vc, a member of the actin motor family associated with Rab8, is involved in the release of DV2 from HepG2 cells,” Intervirology, vol. 52, no. 5, pp. 258–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Kanlaya, S.-N. Pattanakitsakul, S. Sinchaikul, S.-T. Chen, and V. Thongboonkerd, “Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructural protein 1 and is important for viral replication and release,” Molecular BioSystems, vol. 6, no. 5, pp. 795–806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Ang, A. P. Y. Wong, M. M.-L. Ng, and J. J. H. Chu, “Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus,” Virology Journal, vol. 7, no. 1, article 24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Fraisier, L. Camoin, S. Lim et al., “Altered protein networks and cellular pathways in severe west nile disease in mice,” PLoS ONE, vol. 8, no. 7, Article ID e68318, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. M. P. Taylor, O. O. Koyuncu, and L. W. Enquist, “Subversion of the actin cytoskeleton during viral infection,” Nature Reviews Microbiology, vol. 9, no. 6, pp. 427–439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Watabe-Uchida, E.-E. Govek, and L. van Aelst, “Regulators of Rho GTPases in neuronal development,” The Journal of Neuroscience, vol. 26, no. 42, pp. 10633–10635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Wu, N. Gao, D. Fan, J. Wei, J. Zhang, and J. An, “MiR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells,” Microbes and Infection, vol. 16, no. 11, pp. 911–922, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Lei, Y.-P. Tian, W.-D. Xiao et al., “ROCK is involved in vimentin phosphorylation and rearrangement induced by dengue virus,” Cell Biochemistry and Biophysics, vol. 67, no. 3, pp. 1333–1342, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Nawa, T. Takasaki, K.-I. Yamada, I. Kurane, and T. Akatsuka, “Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine,” Journal of General Virology, vol. 84, no. 7, pp. 1737–1741, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Reyes-Del Valle, S. Chávez-Salinas, F. Medina, and R. M. Del Angel, “Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells,” Journal of Virology, vol. 79, no. 8, pp. 4557–4567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. L. J. Foster, C. L. De Hoog, and M. Mann, “Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5813–5818, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. G. R. Medigeshi, A. J. Hirsch, D. N. Streblow, J. Nikolich-Zugich, and J. A. Nelson, “West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 integrin,” Journal of Virology, vol. 82, no. 11, pp. 5212–5219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. K. Cureton, R. H. Massol, S. Saffarian, T. L. Kirchhausen, and S. P. J. Whelan, “Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization,” PLoS Pathogens, vol. 5, no. 4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. O. L. Mooren, B. J. Galletta, and J. A. Cooper, “Roles for actin assembly in endocytosis,” Annual Review of Biochemistry, vol. 81, no. 1, pp. 661–686, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Skruzny, T. Brach, R. Ciuffa, S. Rybina, M. Wachsmuth, and M. Kaksonen, “Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 38, pp. E2533–E2542, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. E. G. Acosta, V. Castilla, and E. B. Damonte, “Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis,” Journal of General Virology, vol. 89, no. 2, pp. 474–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. C.-K. Chuang, T.-H. Yang, T.-H. Chen, C.-F. Yang, and W.-J. Chen, “Heat shock cognate protein 70 isoform D is required for clathrin-dependent endocytosis of Japanese encephalitis virus in C6/36 cells,” Journal of General Virology, vol. 96, no. 4, pp. 793–803, 2015. View at Publisher · View at Google Scholar
  58. J. J. H. Chu, P. W. H. Leong, and M. L. Ng, “Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells,” Virology, vol. 349, no. 2, pp. 463–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. U. F. Greber and M. Way, “A superhighway to virus infection,” Cell, vol. 124, no. 4, pp. 741–754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Merino-Gracia, M. F. García-Mayoral, and I. Rodríguez-Crespo, “The association of viral proteins with host cell dynein components during virus infection,” The FEBS Journal, vol. 278, no. 17, pp. 2997–3011, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Kotsakis, L. E. Pomeranz, A. Blouin, and J. A. Blaho, “Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein,” Journal of Virology, vol. 75, no. 18, pp. 8697–8711, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Růžek, M. Vancová, M. Tesařová, A. Ahantarig, J. Kopecký, and L. Grubhoffer, “Morphological changes in human neural cells following tick-borne encephalitis virus infection,” Journal of General Virology, vol. 90, no. 7, pp. 1649–1658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. P. R. Sager, “Cytoskeletal effects of acrylamide and 2,5-hexanedione: selective aggregation of vimentin filaments,” Toxicology and Applied Pharmacology, vol. 97, no. 1, pp. 141–155, 1989. View at Publisher · View at Google Scholar · View at Scopus
  64. M. L. Ng, “Ultrastructural studies of Kunjin virus-infected Aedes albopictus cells,” Journal of General Virology, vol. 68, no. 2, pp. 577–582, 1987. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Lee Ng, J. S. Pedersen, B. H. Toh, and E. G. Westaway, “Immunofluorescent sites in vero cells infected with the flavivirus Kunjin,” Archives of Virology, vol. 78, no. 3-4, pp. 177–190, 1983. View at Publisher · View at Google Scholar · View at Scopus
  66. M. S. Henry Sum, “The involvement of microtubules and actin during the infection of Japanese encephalitis virus in neuroblastoma cell line, IMR32,” BioMed Research International, vol. 2015, Article ID 695283, 8 pages, 2015. View at Publisher · View at Google Scholar
  67. M. Le Breton, L. Meyniel-Schicklin, A. Deloire et al., “Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen,” BMC Microbiology, vol. 11, article 234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. S. M. Dudek and J. G. N. Garcia, “Cytoskeletal regulation of pulmonary vascular permeability,” Journal of Applied Physiology, vol. 91, no. 4, pp. 1487–1500, 2001. View at Google Scholar · View at Scopus
  69. N. Prasain and T. Stevens, “The actin cytoskeleton in endothelial cell phenotypes,” Microvascular Research, vol. 77, no. 1, pp. 53–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Vandenbroucke, D. Mehta, R. Minshall, and A. B. Malik, “Regulation of endothelial junctional permeability,” Annals of the New York Academy of Sciences, vol. 1123, pp. 134–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Cai, L. Pestic-Dragovich, M. E. O'Donnell et al., “Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation,” The American Journal of Physiology—Cell Physiology, vol. 275, no. 5, pp. C1349–C1356, 1998. View at Google Scholar · View at Scopus
  72. M. Chrzanowska-Wodnicka and K. Burridge, “Rho-stimulated contractility drives the formation of stress fibers and focal adhesions,” The Journal of Cell Biology, vol. 133, no. 6, pp. 1403–1415, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. H.-J. Schnittler, A. Wilke, T. Gress, N. Suttorp, and D. Drenckhahn, “Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium,” The Journal of Physiology, vol. 431, pp. 379–401, 1990. View at Publisher · View at Google Scholar · View at Scopus
  74. R. R. Rigor, Q. Shen, C. D. Pivetti, M. H. Wu, and S. Y. Yuan, “Myosin light chain kinase signaling in endothelial barrier dysfunction,” Medicinal Research Reviews, vol. 33, no. 5, pp. 911–933, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Döhner and B. Sodeik, “The role of the cytoskeleton during viral infection,” Current Topics in Microbiology and Immunology, vol. 285, pp. 67–108, 2004. View at Google Scholar · View at Scopus
  76. J. S. Abramson, E. L. Mills, G. S. Giebink, and P. G. Quie, “Depression of monocyte and polymorphonuclear leukocyte oxidative metabolism and bactericidal capacity by influenza A virus,” Infection and Immunity, vol. 35, no. 1, pp. 350–355, 1982. View at Google Scholar · View at Scopus
  77. J. S. Abramson, J. W. Parce, J. C. Lewis et al., “Characterization of the effect of influenza virus on polymorphonuclear leukocyte membrane responses,” Blood, vol. 64, no. 1, pp. 131–138, 1984. View at Google Scholar · View at Scopus
  78. J. G. Wheeler, L. S. Winkler, M. Seeds, D. Bass, and J. S. Abramson, “Influenza A virus alters structural and biochemical functions of the neutrophil cytoskeleton,” Journal of Leukocyte Biology, vol. 47, no. 4, pp. 332–343, 1990. View at Google Scholar · View at Scopus
  79. F. Y. Shaikh, T. J. Utley, R. E. Craven et al., “Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins,” PLoS ONE, vol. 7, no. 7, Article ID e40826, 2012. View at Publisher · View at Google Scholar · View at Scopus