Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 429253, 7 pages
http://dx.doi.org/10.1155/2015/429253
Research Article

Identification of pLG72-Induced Oxidative Stress Using Systemic Approaches

1Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
2Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, China
3Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
4Department of Internal Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, China
5Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan

Received 1 July 2015; Revised 1 August 2015; Accepted 17 August 2015

Academic Editor: Ahmet Hacımüftüoğlu

Copyright © 2015 Maofeng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Chumakov, M. Blumenfeld, O. Guerassimenko et al., “Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13675–13680, 2002. View at Publisher · View at Google Scholar
  2. J. Ma, W. Qin, X. Y. Wang et al., “Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations,” Molecular Psychiatry, vol. 11, no. 5, pp. 479–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. J. Bass, S. R. Datta, A. McQuillin et al., “Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia,” Behavioral and Brain Functions, vol. 5, article 28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. D. Detera-Wadleigh and F. J. McMahon, “G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis,” Biological Psychiatry, vol. 60, no. 2, pp. 106–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. C. Schultz, I. Nenadic, K. Koch et al., “Reduced cortical thickness is associated with the glutamatergic regulatory gene risk variant DAOA Arg30Lys in schizophrenia,” Neuropsychopharmacology, vol. 36, no. 8, pp. 1747–1753, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Donohoe, D. W. Morris, I. H. Robertson et al., “DAOA ARG30LYS and verbal memory function in schizophrenia,” Molecular Psychiatry, vol. 12, no. 9, pp. 795–796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hashimoto, T. Fukushima, E. Shimizu et al., “Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia,” Archives of General Psychiatry, vol. 60, no. 6, pp. 572–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Kvajo, A. Dhilla, D. E. Swor, M. Karayiorgou, and J. A. Gogos, “Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function,” Molecular Psychiatry, vol. 13, no. 7, pp. 685–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sacchi, M. Bernasconi, M. Martineau et al., “pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility,” Journal of Biological Chemistry, vol. 283, no. 32, pp. 22244–22256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-H. Lin, H.-T. Chang, Y.-J. Chen et al., “Distinctively higher plasma G72 protein levels in patients with schizophrenia than in healthy individuals,” Molecular Psychiatry, vol. 19, no. 6, pp. 636–637, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. S. L.-Y. Chang, C.-H. Hsieh, Y.-J. Chen et al., “The C-terminal region of G72 increases D-amino acid oxidase activity,” International Journal of Molecular Sciences, vol. 15, no. 1, pp. 29–43, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-S. Liu, P.-W. Tsai, Y. Wang et al., “Chemoattraction of macrophages by secretory molecules derived from cells expressing the signal peptide of eosinophil cationic protein,” BMC Systems Biology, vol. 6, article 105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris, “GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function,” Genome Biology, vol. 9, no. 1, article S4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Zuberi, M. Franz, H. Rodriguez et al., “GeneMANIA prediction server 2013 update,” Nucleic Acids Research, vol. 41, pp. W115–W122, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Zhang, J. Wang, K. Hanspers, D. Xu, L. Chen, and A. R. Pico, “NOA: a cytoscape plugin for network ontology analysis,” Bioinformatics, vol. 29, no. 16, pp. 2066–2067, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Wang, Q. Huang, Z.-P. Liu et al., “NOA: a novel Network Ontology Analysis method,” Nucleic Acids Research, vol. 39, no. 13, article e87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Bronte and P. Zanovello, “Regulation of immune responses by L-arginine metabolism,” Nature Reviews Immunology, vol. 5, no. 8, pp. 641–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Cheng, E. Hattori, A. Nakajima et al., “Expression of the G72/G30 gene in transgenic mice induces behavioral changes,” Molecular Psychiatry, vol. 19, no. 2, pp. 175–183, 2014. View at Publisher · View at Google Scholar
  19. D.-M. Otte, B. Sommersberg, A. Kudin et al., “N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice,” Neuropsychopharmacology, vol. 36, no. 11, pp. 2233–2243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Cappelletti, P. Campomenosi, L. Pollegioni, and S. Sacchi, “The degradation (by distinct pathways) of human D-amino acid oxidase and its interacting partner pLG72—two key proteins in D-serine catabolism in the brain,” The FEBS Journal, vol. 281, no. 3, pp. 708–723, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sacchi, P. Cappelletti, S. Giovannardi, and L. Pollegioni, “Evidence for the interaction of d-amino acid oxidase with pLG72 in a glial cell line,” Molecular and Cellular Neuroscience, vol. 48, no. 1, pp. 20–28, 2011. View at Publisher · View at Google Scholar · View at Scopus