Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 430847, 11 pages
http://dx.doi.org/10.1155/2015/430847
Review Article

Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of Regenerative Medicine? Recent Findings and Clinical Significance

1Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
2Centre for Preclinical Research and Technology, Banacha 1b, 02-097 Warsaw, Poland
3Polish Stem Cell Bank, Grzybowska 2/41, 00-131 Warsaw, Poland

Received 12 December 2014; Accepted 2 March 2015

Academic Editor: Josep Maria Pujal

Copyright © 2015 Ilona Kalaszczynska and Katarzyna Ferdyn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Friedenstein, I. I. Piatetzky-Shapiro, and K. V. Petrakova, “Osteogenesis in transplants of bone marrow cells,” Journal of Embryology and Experimental Morphology, vol. 16, no. 3, pp. 381–390, 1966. View at Google Scholar · View at Scopus
  2. M. Owen, “Marrow stromal stem cells,” Journal of Cell Science, no. 10, pp. 63–76, 1988. View at Google Scholar · View at Scopus
  3. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. T. Williams IV, S. S. Southerland, J. Souza, A. F. Calcutt, and R. G. Cartledge, “Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes,” American Surgeon, vol. 65, no. 1, pp. 22–26, 1999. View at Google Scholar · View at Scopus
  5. I. Kassis, L. Zangi, R. Rivkin et al., “Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads,” Bone Marrow Transplantation, vol. 37, no. 10, pp. 967–976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. T. Hennrick, A. G. Keeton, S. Nanua et al., “Lung cells from neonates show a mesenchymal stem cell phenotype,” The American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 11, pp. 1158–1164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. J. H. Chong, V. Chandrakanthan, M. Xaymardan et al., “Adult cardiac-resident MSC-like stem cells with a proepicardial origin,” Cell Stem Cell, vol. 9, no. 6, pp. 527–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Branch, K. Hashmani, P. Dhillon, D. R. E. Jones, H. S. Dua, and A. Hopkinson, “Mesenchymal stem cells in the human corneal limbal stroma,” Investigative Ophthalmology and Visual Science, vol. 53, no. 9, pp. 5109–5116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji, “Human placenta-derived cells have mesenchymal stem/progenitor cell potential,” Stem Cells, vol. 22, no. 5, pp. 649–658, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. H. Cho, Y. K. Park, Y. T. Kim, H. Yang, and S. K. Kim, “Lifetime expression of stem cell markers in the uterine endometrium,” Fertility and Sterility, vol. 81, no. 2, pp. 403–407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Alviano, V. Fossati, C. Marchionni et al., “Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro,” BMC Developmental Biology, vol. 7, article 11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. S. Wang, S. C. Hung, S. T. Peng et al., “Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord,” Stem Cells, vol. 22, no. 7, pp. 1330–1337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Stolzing, E. Jones, D. McGonagle, and A. Scutt, “Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies,” Mechanisms of Ageing and Development, vol. 129, no. 3, pp. 163–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Huang, D.-H. Zhou, S.-L. Huang, and S.-H. Liang, “Age-related biological characteristics of human bone marrow mesenchymal stem cells from different age donors,” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 13, no. 6, pp. 1049–1053, 2005. View at Google Scholar · View at Scopus
  16. K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, “Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,” Bone, vol. 33, no. 6, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Duscher, R. C. Rennert, M. Januszyk et al., “Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells,” Scientific Reports, vol. 4, article 7144, 2014. View at Publisher · View at Google Scholar
  18. C.-H. Ting, P.-J. Ho, and B. L. Yen, “Age-related decreases of serum-response factor levels in human mesenchymal stem cells are involved in skeletal muscle differentiation and engraftment capacity,” Stem Cells and Development, vol. 23, no. 11, pp. 1206–1216, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Gharibi, S. Farzadi, M. Ghuman, and F. J. Hughes, “Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells,” STEM CELLS, vol. 32, no. 8, pp. 2256–2266, 2014. View at Publisher · View at Google Scholar
  20. M. L. Bustos, L. Huleihel, M. G. Kapetanaki et al., “Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response,” The American Journal of Respiratory and Critical Care Medicine, vol. 189, no. 7, pp. 787–798, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Chen, X. Liu, W. Zhu et al., “SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin,” Frontiers in Aging Neuroscience, vol. 6, article 103, 2014. View at Publisher · View at Google Scholar
  22. H.-F. Yuan, C. Zhai, X.-L. Yan et al., “SIRT1 is required for long-term growth of human mesenchymal stem cells,” Journal of Molecular Medicine, vol. 90, no. 4, pp. 389–400, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. E. U. Alt, C. Senst, S. N. Murthy et al., “Aging alters tissue resident mesenchymal stem cell properties,” Stem Cell Research, vol. 8, no. 2, pp. 215–225, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Madonna, F. V. Renna, C. Cellini et al., “Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells,” European Journal of Clinical Investigation, vol. 41, no. 2, pp. 126–133, 2011. View at Publisher · View at Google Scholar
  25. L. Li, Y. Guo, H. Zhai et al., “Aging increases the susceptivity of MSCs to reactive oxygen species and impairs their therapeutic potency for myocardial infarction,” PLoS ONE, vol. 9, no. 11, Article ID e111850, 2014. View at Publisher · View at Google Scholar
  26. M. Fan, W. Chen, W. Liu et al., “The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction,” Rejuvenation Research, vol. 13, no. 4, pp. 429–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Hermann, C. List, H.-J. Habisch et al., “Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies,” Cytotherapy, vol. 12, no. 1, pp. 17–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Müller, O. Raabe, K. Addicks, S. Wenisch, and S. Arnhold, “Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells,” Cell Biology International, vol. 35, no. 3, pp. 235–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Almaawi, H. T. Wang, O. Ciobanu et al., “Effect of acetaminophen and nonsteroidal anti-inflammatory drugs on gene expression of mesenchymal stem cells,” Tissue Engineering—Part A, vol. 19, no. 7-8, pp. 1039–1046, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Salem, H. Wang, A. M. Alaseem et al., “Naproxen affects osteogenesis of human mesenchymal stem cells via regulation of Indian hedgehog signaling molecules,” Arthritis Research & Therapy, vol. 16, no. 4, article R152, 2014. View at Publisher · View at Google Scholar
  31. I. Pountos, P. V. Giannoudis, E. Jones et al., “NSAIDS inhibit in vitro MSC chondrogenesis but not osteogenesis: implications for mechanism of bone formation inhibition in man,” Journal of Cellular and Molecular Medicine, vol. 15, no. 3, pp. 525–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Lamontagne, S. E. Akoum, I. Cloutier, and J.-F. Tanguay, “High-fat diets-induced metabolic alterations alter the differentiation potential of adipose tissue-derived stem cells,” Open Journal of Endocrine and Metabolic Diseases, vol. 3, no. 3, pp. 197–207, 2013. View at Publisher · View at Google Scholar
  33. M. Roldan, M. Macias-Gonzalez, R. Garcia, F. J. Tinahones, and M. Martin, “Obesity short-circuits stemness gene network in human adipose multipotent stem cells,” The FASEB Journal, vol. 25, no. 12, pp. 4111–4126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C.-L. Wu, B. O. Diekman, D. Jain, and F. Guilak, “Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids,” International Journal of Obesity, vol. 37, no. 8, pp. 1079–1087, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Y. Park, C. E. Yeum, G. Seo, J.-Y. Lee, S.-B. Lee, and G.-T. Chae, “The adipogenic effect of palmitate in mouse bone marrow-derived mesenchymal stem cells,” Tissue Engineering and Regenerative Medicine, vol. 10, no. 2, pp. 77–85, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Oñate, G. Vilahur, S. Camino-López et al., “Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype,” BMC Genomics, vol. 14, article 625, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Lazar, “How obesity causes diabetes: not a tall tale,” Science, vol. 307, no. 5708, pp. 373–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Phadnis, S. M. Ghaskadbi, A. A. Hardikar, and R. R. Bhonde, “Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment,” Review of Diabetic Studies, vol. 6, no. 4, pp. 260–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. C. Rennert, M. Sorkin, M. Januszyk et al., “Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations,” Stem Cell Research & Therapy, vol. 5, no. 3, article 79, 2014. View at Publisher · View at Google Scholar
  40. Z. Kočí, K. Turnovcová, M. Dubský et al., “Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient's distal limbs with critical ischemia,” Cell Biochemistry and Function, vol. 32, no. 7, pp. 597–604, 2014. View at Publisher · View at Google Scholar
  41. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Google Scholar
  42. J. K. Fraser, I. Wulur, Z. Alfonso, and M. H. Hedrick, “Fat tissue: an underappreciated source of stem cells for biotechnology,” Trends in Biotechnology, vol. 24, no. 4, pp. 150–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. L. Weiss, S. Medicetty, A. R. Bledsoe et al., “Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease,” Stem Cells, vol. 24, no. 3, pp. 781–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. P. R. Amable, M. V. T. Teixeira, R. B. V. Carias, J. M. Granjeiro, and R. Borojevic, “Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly,” Stem Cell Research and Therapy, vol. 5, no. 2, article 53, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Salehinejad, N. B. Alitheen, A. M. Ali et al., “Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly,” In Vitro Cellular & Developmental Biology: Animal, vol. 48, no. 2, pp. 75–83, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. J. H. Yoon, E. Y. Roh, S. Shin et al., “Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton's jelly,” BioMed Research International, vol. 2013, Article ID 428726, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Karahuseyinoglu, O. Cinar, E. Kilic et al., “Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys,” Stem Cells, vol. 25, no. 2, pp. 319–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Seshareddy, D. Troyer, and M. L. Weiss, “Method to isolate mesenchymal-like cells from Wharton's Jelly of umbilical cord,” Methods in Cell Biology, vol. 86, pp. 101–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. Y.-F. Han, R. Tao, T.-J. Sun, J.-K. Chai, G. Xu, and J. Liu, “Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods,” Cytotechnology, vol. 65, no. 5, pp. 819–827, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Sobolewski, A. Małkowski, E. Bańkowski, and S. Jaworski, “Wharton's jelly as a reservoir of peptide growth factors,” Placenta, vol. 26, no. 10, pp. 747–752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Tsutsumi, A. Shimazu, K. Miyazaki et al., “Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF,” Biochemical and Biophysical Research Communications, vol. 288, no. 2, pp. 413–419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Ng, S. Boucher, S. Koh et al., “PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages,” Blood, vol. 112, no. 2, pp. 295–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. L. A. Solchaga, K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan, and J. F. Welter, “FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells,” Journal of Cellular Physiology, vol. 203, no. 2, pp. 398–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. L. A. Solchaga, J. J. Auletta, E. A. Zale, and J. F. Welter, “Fibroblast growth factor-2 enhances expansion of human bone marrow-derived mesenchymal stromal cells without diminishing their immunosuppressive potential,” Stem Cells International, Article ID 235176, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Chang, T. Hou, J. Xing et al., “Umbilical cord wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering,” PLoS ONE, vol. 9, no. 10, Article ID e110764, 2014. View at Publisher · View at Google Scholar
  56. F. Hendijani, H. Sadeghi-Aliabadi, and S. Haghjooy Javanmard, “Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix,” Cell and Tissue Banking, vol. 15, no. 4, pp. 555–565, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. G. La Rocca, R. Anzalone, S. Corrao et al., “Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers,” Histochemistry and Cell Biology, vol. 131, no. 2, pp. 267–282, 2009. View at Publisher · View at Google Scholar
  58. C. De Bruyn, M. Najar, G. Raicevic et al., “A rapid, simple, and reproducible method for the isolation of mesenchymal stromal cells from wharton's jelly without enzymatic treatment,” Stem Cells and Development, vol. 20, no. 3, pp. 547–557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Dominici, K. le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. T. Conconi, R. D. Liddo, M. Tommasini, C. Calore, and P. P. Parnigotto, “Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview,” The Open Tissue Engineering and Regenerative Medicine Journal, vol. 4, pp. 6–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Anzalone, M. L. Iacono, S. Corrao et al., “New emerging potentials for human wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity,” Stem Cells and Development, vol. 19, no. 4, pp. 423–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. K. I. Pappa and N. P. Anagnou, “Novel sources of fetal stem cells: where do they fit on the developmental continuum?” Regenerative Medicine, vol. 4, no. 3, pp. 423–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. U. Nekanti, L. Mohanty, P. Venugopal, S. Balasubramanian, S. Totey, and M. Ta, “Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications,” Stem Cell Research, vol. 5, no. 3, pp. 244–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C. K. Tong, S. Vellasamy, B. C. Tan et al., “Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method,” Cell Biology International, vol. 35, no. 3, pp. 221–226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. C.-Y. Fong, L.-L. Chak, A. Biswas et al., “Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells,” Stem Cell Reviews and Reports, vol. 7, no. 1, pp. 1–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. R. S. Rachakatla, F. Marini, M. L. Weiss, M. Tamura, and D. Troyer, “Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors,” Cancer Gene Therapy, vol. 14, no. 10, pp. 828–835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. D.-W. Kim, M. Staples, K. Shinozuka, P. Pantcheva, S.-D. Kang, and C. V. Borlongan, “Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications,” International Journal of Molecular Sciences, vol. 14, no. 6, pp. 11692–11712, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Gauthaman, F. C. Yee, S. Cheyyatraivendran, A. Biswas, M. Choolani, and A. Bongso, “Human umbilical cord Wharton's jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro,” Journal of Cellular Biochemistry, vol. 113, no. 6, pp. 2027–2039, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. C.-Y. Fong, A. Biswas, A. Subramanian, A. Srinivasan, M. Choolani, and A. Bongso, “Human keloid cell characterization and inhibition of growth with human Wharton's jelly stem cell extracts,” Journal of Cellular Biochemistry, vol. 115, no. 5, pp. 826–838, 2014. View at Publisher · View at Google Scholar
  70. S. Wu, G.-Q. Ju, T. Du, Y.-J. Zhu, and G.-H. Liu, “Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo,” PLoS ONE, vol. 8, no. 4, Article ID e61366, 2013. View at Publisher · View at Google Scholar · View at Scopus
  71. H. D. Lin, C. Y. Fong, A. Biswas, M. Choolani, and A. Bongso, “Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells,” Stem Cell Reviews and Reports, vol. 10, no. 4, pp. 573–586, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Matsuzuka, R. S. Rachakatla, C. Doi et al., “Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice,” Lung Cancer, vol. 70, no. 1, pp. 28–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Doi, D. K. Maurya, M. M. Pyle, D. Troyer, and M. Tamura, “Cytotherapy with naive rat umbilical cord matrix stem cells significantly attenuates growth of murine pancreatic cancer cells and increases survival in syngeneic mice,” Cytotherapy, vol. 12, no. 3, pp. 408–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Ayuzawa, C. Doi, R. S. Rachakatla et al., “Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo,” Cancer Letters, vol. 280, no. 1, pp. 31–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Gauthaman, C.-Y. Fong, S. Arularasu et al., “Human Wharton's jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice,” Journal of Cellular Biochemistry, vol. 114, no. 2, pp. 366–377, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. D. K. Maurya, C. Doi, A. Kawabata et al., “Therapy with un-engineered naïve rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma,” BMC Cancer, vol. 10, article 590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Ganta, D. Chiyo, R. Ayuzawa et al., “Rat umbilical cord stern cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation,” Cancer Research, vol. 69, no. 5, pp. 1815–1820, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Han, M. Yun, E.-O. Kim, B. Kim, M.-H. Jung, and S.-H. Kim, “Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling,” Stem Cell Research and Therapy, vol. 5, no. 2, article no. 54, 2014. View at Publisher · View at Google Scholar · View at Scopus
  79. X. Yang, Z. Li, Y. Ma et al., “Human umbilical cord mesenchymal stem cells promote carcinoma growth and lymph node metastasis when co-injected with esophageal carcinoma cells in nude mice,” Cancer Cell International, vol. 14, no. 1, article 93, 2014. View at Publisher · View at Google Scholar
  80. T. Du, G. Ju, S. Wu et al., “Microvesicles derived from human Wharton's jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor,” PLoS ONE, vol. 9, no. 5, Article ID e96836, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Wang, Y. Yang, D. Yang et al., “The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro,” Immunology, vol. 126, no. 2, pp. 220–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Zhou, B. Yang, Y. Tian et al., “Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes,” Cellular Immunology, vol. 272, no. 1, pp. 33–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. M. L. Weiss, C. Anderson, S. Medicetty et al., “Immune properties of human umbilical cord Wharton's jelly-derived cells,” Stem Cells, vol. 26, no. 11, pp. 2865–2874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Jyothi Prasanna and V. S. Jahnavi, “Wharton's jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties,” Open Tissue Engineering and Regenerative Medicine Journal, vol. 4, no. 1, pp. 28–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Ma, N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang, “Immunobiology of mesenchymal stem cells,” Cell Death and Differentiation, vol. 21, no. 2, pp. 216–225, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. X.-P. Huang, Z. Sun, Y. Miyagi et al., “Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair,” Circulation, vol. 122, no. 23, pp. 2419–2429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Kotobuki, Y. Katsube, Y. Katou, M. Tadokoro, M. Hirose, and H. Ohgushi, “In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs),” Cell Transplantation, vol. 17, no. 6, pp. 705–712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Liu, M. Yuan, K. Hou et al., “Immune characterization of mesenchymal stem cells in human umbilical cord Wharton's jelly and derived cartilage cells,” Cellular Immunology, vol. 278, no. 1-2, pp. 35–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Medicetty, A. R. Bledsoe, C. B. Fahrenholtz, D. Troyer, and M. L. Weiss, “Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks,” Experimental Neurology, vol. 190, no. 1, pp. 32–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Hu, X. Yu, Z. Wang et al., “Long term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus,” Endocrine Journal, vol. 60, no. 3, pp. 347–357, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. X. Liu, P. Zheng, X. Wang et al., “A preliminary evaluation of efficacy and safety of Wharton's jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus,” Stem Cell Research and Therapy, vol. 5, no. 2, article no. 57, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. Q. Chen, K. Liu, A. R. Robinson et al., “DNA damage drives accelerated bone aging via an NF- κB-dependent mechanism,” Journal of Bone and Mineral Research, vol. 28, no. 5, pp. 1214–1228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Siegel, T. Kluba, U. Hermanutz-Klein, K. Bieback, H. Northoff, and R. Schäfer, “Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells,” BMC Medicine, vol. 11, article 146, 2013. View at Publisher · View at Google Scholar · View at Scopus
  94. D. Wang, J. Li, Y. Zhang et al., “Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study,” Arthritis Research and Therapy, vol. 16, no. 2, article R79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Wang, F. Chen, B. Gu, G. Chen, H. Chang, and D. Wu, “Mesenchymal stromal cells as an adjuvant treatment for severe late-onset hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation,” Acta Haematologica, vol. 133, no. 1, pp. 72–77, 2015. View at Publisher · View at Google Scholar