Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 501326, 7 pages
http://dx.doi.org/10.1155/2015/501326
Research Article

Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

1Département de Chimie, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC, Canada H3C 3P8
2Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, 7021 Bizerte, Tunisia

Received 25 June 2014; Revised 14 September 2014; Accepted 29 September 2014

Academic Editor: Rishi Shanker

Copyright © 2015 Abdallah Oukarroum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Klaine, P. J. J. Alvarez, G. E. Batley et al., “Nanomaterials in the environment: behavior, fate, bioavailability, and effects,” Environmental Toxicology and Chemistry, vol. 27, no. 9, pp. 1825–1851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Bhatt and B. N. Tripathi, “Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment,” Chemosphere, vol. 82, no. 3, pp. 308–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, and J. L. Gardea-Torresdey, “Nanomaterials and the environment: a review for the biennium 2008–2010,” Journal of Hazardous Materials, vol. 186, no. 1, pp. 1–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Griffitt, J. Luo, J. Gao, J.-C. Bonzongo, and D. S. Barber, “Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms,” Environmental Toxicology and Chemistry, vol. 27, no. 9, pp. 1972–1978, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Ju-Nam and J. R. Lead, “Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications,” Science of the Total Environment, vol. 400, no. 1–3, pp. 396–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Xia, M. Kovochich, M. Liong et al., “Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties,” ACS Nano, vol. 2, no. 10, pp. 2121–2134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Jiang, G. Oberdörster, and P. Biswas, “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,” Journal of Nanoparticle Research, vol. 11, no. 1, pp. 77–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, “Environmental transformations of silver nanoparticles: impact on stability and toxicity,” Environmental Science and Technology, vol. 46, no. 13, pp. 6900–6914, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Oukarroum, L. Barhoumi, L. Pirastru, and D. Dewez, “Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba,” Environmental Toxicology and Chemistry, vol. 32, no. 4, pp. 902–907, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Perreault, M. Samadani, and D. Dewez, “Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L,” Nanotoxicology, vol. 8, no. 4, pp. 374–382, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Fabrega, S. R. Fawcett, J. C. Renshaw, and J. R. Lead, “Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter,” Environmental Science and Technology, vol. 43, no. 19, pp. 7285–7290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Y. Yin, Y. W. Cheng, B. Espinasse et al., “More than the ions: the effects of silver nanoparticles on Lolium multiflorum,” Environmental Science and Technology, vol. 45, no. 6, pp. 2360–2367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Perreault, R. Popovic, and D. Dewez, “Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba,” Environmental Pollution, vol. 185, pp. 219–227, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Rodea-Palomares, K. Boltes, F. Fernández-Piñas et al., “Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms,” Toxicological Sciences, vol. 119, no. 1, pp. 135–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Song, D. Wen, Z. X. Guo, and T. Korakianitis, “Oxidation investigation of nickel nanoparticles,” Physical Chemistry Chemical Physics, vol. 10, no. 33, pp. 5057–5065, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Magaye and J. Zhao, “Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity,” Environmental Toxicology and Pharmacology, vol. 34, no. 3, pp. 644–650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. OECD, “Lemna sp. Growth Inhibition Test,” Guidelines for the testing of Chemicals, OECD, 2006.
  18. M. A. Lewis, “Use of freshwater plants for phytotoxicity testing: a review,” Environmental Pollution, vol. 87, no. 3, pp. 319–336, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. I. B. Gerber and I. A. Dubery, “Fluorescence microplate assay for the detection of oxidative burst products in tobacco cell suspensions using 2′,7′-dichlorofluorescein,” Methods in Cell Science, vol. 25, no. 3-4, pp. 115–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. T. S. Babu, T. A. Akhtar, M. A. Lampi, S. Tripuranthakam, D. G. Dixon, and B. M. Greenberg, “Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba ? Implication of reactive oxygen species as common signals,” Plant and Cell Physiology, vol. 44, no. 12, pp. 1320–1329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 42, no. 1, pp. 313–349, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Strasser, A. Srivastava, and M. Tsimilli-Michael, “Analysis of the chlorophyll a fluorescence transient,” in Chlorophyll Fluorescence: A Signature of Photosynthesis, G. G. Papageorgiou, Ed., vol. 19 of Advances in Photosynthesis and Respiration, pp. 321–362, Kluwer Academic Publishers, Dodrecht, The Netherlands, 2004. View at Publisher · View at Google Scholar
  23. E. J. Gubbins, L. C. Batty, and J. R. Lead, “Phytotoxicity of silver nanoparticles to Lemna minor L,” Environmental Pollution, vol. 159, no. 6, pp. 1551–1559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Oukarroum, S. Bras, F. Perreault, and R. Popovic, “Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta,” Ecotoxicology and Environmental Safety, vol. 78, pp. 80–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Ispas, D. Andreescu, A. Patel, D. V. Goia, S. Andreescu, and K. N. Wallace, “Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish,” Environmental Science and Technology, vol. 43, no. 16, pp. 6349–6356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Gong, K. Shao, W. Feng, Z. Lin, C. Liang, and Y. Sun, “Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris,” Chemosphere, vol. 83, no. 4, pp. 510–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Ma and D. Lin, “The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization,” Environmental Sciences: Processes & Impacts, vol. 15, no. 1, pp. 145–160, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. S. K. Misra, A. Dybowska, D. Berhanu, S. N. Luoma, and E. Valsami-Jones, “The complexity of nanoparticle dissolution and its importance in nanotoxicological studies,” Science of the Total Environment, vol. 438, pp. 225–232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Schansker, S. Z. Tóth, and R. J. Strasser, “Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP,” Biochimica et Biophysica Acta (BBA)—Bioenergetics, vol. 1706, no. 3, pp. 250–261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Boisvert, D. Joly, S. Leclerc, S. Govindachary, J. Harnois, and R. Carpentier, “Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel,” BioMetals, vol. 20, no. 6, pp. 879–889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K.-J. Appenroth, K. Krech, Á. Keresztes, W. Fischer, and H. Koloczek, “Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation,” Chemosphere, vol. 78, no. 3, pp. 216–223, 2010. View at Publisher · View at Google Scholar · View at Scopus