Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 540297, 14 pages
http://dx.doi.org/10.1155/2015/540297
Review Article

A Glimpse to Background and Characteristics of Major Molecular Biological Networks

1Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
2Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi-shi, Aichi 441-8580, Japan

Received 1 May 2015; Revised 22 July 2015; Accepted 18 August 2015

Academic Editor: Xia Li

Copyright © 2015 Md. Altaf-Ul-Amin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Altaf-Ul-Amin, F. M. Afendi, S. K. Kiboi, and S. Kanaya, “Systems biology in the context of big data and networks,” BioMed Research International, vol. 2014, Article ID 428570, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. B. H. Junker and F. Schreiber, Analysis of Biological Networks, vol. 2, John Wiley & Sons, New York, NY, USA, 2008.
  3. R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. H. Junker, D. Koschützki, and F. Schreiber, “Exploration of biological network centralities with CentiBiN,” BMC Bioinformatics, vol. 7, article 219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Emmert-Streib and M. Dehmer, “Networks for systems biology: conceptual connection of data and function,” IET Systems Biology, vol. 5, no. 3, pp. 185–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Emmert-Streib, M. Dehmer, and B. Haibe-Kains, “Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks,” Frontiers in Cell and Developmental Biology, vol. 2, article 28, 2014. View at Publisher · View at Google Scholar
  8. H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, and T. Ideker, “Network-based classification of breast cancer metastasis,” Molecular Systems Biology, vol. 3, no. 1, article 140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Ben-Hamo and S. Efroni, “Gene expression and network-based analysis reveals a novel role for hsa-miR-9 and drug control over the p38 network in glioblastoma multiforme progression,” Genome Medicine, vol. 3, no. 11, article 77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Chen, J. Xuan, R. B. Riggins, R. Clarke, and Y. Wang, “Identifying cancer biomarkers by network-constrained support vector machines,” BMC Systems Biology, vol. 5, no. 1, article 161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Dehmer, L. A. J. Mueller, and F. Emmert-Streib, “Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers,” PLoS ONE, vol. 8, no. 11, Article ID e77602, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Chen, B. J. Aronow, and A. G. Jegga, “Disease candidate gene identification and prioritization using protein interaction networks,” BMC Bioinformatics, vol. 10, article 73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. K. Nibbe, S. Markowitz, L. Myeroff, R. Ewing, and M. R. Chance, “Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer,” Molecular and Cellular Proteomics, vol. 8, no. 4, pp. 827–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. K. Nibbe, M. Koyutü, and M. R. Chance, “An integrative -omics approach to identify functional sub-networks in human colorectal cancer,” PLoS Computational Biology, vol. 6, no. 1, Article ID e1000639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Geppert and H. Koeppen, “Biological networks and drug discovery—where do we stand?” Drug Development Research, vol. 75, no. 5, pp. 271–282, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. H. S. Lee, T. Bae, J.-H. Lee et al., “Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug,” BMC Systems Biology, vol. 6, no. 1, article 80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Hu and P. Agarwal, “Human disease-drug network based on genomic expression profiles,” PLoS ONE, vol. 4, no. 8, Article ID e6536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Gottlieb, G. Y. Stein, E. Ruppin, and R. Sharan, “PREDICT: a method for inferring novel drug indications with application to personalized medicine,” Molecular Systems Biology, vol. 7, article 496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Zhao and S. Li, “Network-based relating pharmacological and genomic spaces for drug target identification,” PLoS ONE, vol. 5, no. 7, Article ID e11764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Traven, B. Jelicic, and M. Sopta, “Yeast Gal4: a transcriptional paradigm revisited,” EMBO Reports, vol. 7, no. 5, pp. 496–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. D. Baleja, V. Thanabal, and G. Wagner, “Refined solution structure of the DNA-binding domain of GAL4 and use of 3J(113Cd,1H) in structure determination,” Journal of Biomolecular NMR, vol. 10, no. 4, pp. 397–401, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Ptashne, “Regulation of transcription: from lambda to eukaryotes,” Trends in Biochemical Sciences, vol. 30, no. 6, pp. 275–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. T. Smale and J. T. Kadonaga, “The RNA polymerase II core promoter,” Annual Review of Biochemistry, vol. 72, pp. 449–479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. G. A. Maston, S. K. Evans, and M. R. Green, “Transcriptional regulatory elements in the human genome,” Annual Review of Genomics and Human Genetics, vol. 7, no. 1, pp. 29–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Andersson, “Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model,” BioEssays, vol. 37, no. 3, pp. 314–323, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. M. M. Babu and S. A. Teichmann, “Functional determinants of transcription factors in Escherichia coli: protein families and binding sites,” Trends in Genetics, vol. 19, no. 2, pp. 75–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. F. Browning and S. J. W. Busby, “The regulation of bacterial transcription initiation,” Nature Reviews Microbiology, vol. 2, no. 1, pp. 57–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. A. Gagniuc and C. Ionescu-Tirgoviste, “Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters,” BMC Genomics, vol. 13, no. 1, article 512, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Thanbichler, S. C. Wang, and L. Shapiro, “The bacterial nucleoid: a highly organized and dynamic structure,” Journal of Cellular Biochemistry, vol. 96, no. 3, pp. 506–521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Brilli, E. Calistri, and P. Lió, “Transcription factors and gene regulatory networks,” in Networks in Cell Biology, M. Buchanan, G. Caldarelli, P. D. L. Rios, F. Rao, and M. Vendruscolo, Eds., pp. 36–52, Cambridge University Press, 2010. View at Google Scholar
  31. A. M. Gurtan and P. A. Sharp, “The role of miRNAs in regulating gene expression networks,” Journal of Molecular Biology, vol. 425, no. 19, pp. 3582–3600, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. C. A. Grove, F. De Masi, M. I. Barrasa et al., “A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors,” Cell, vol. 138, no. 2, pp. 314–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Altaf-Ul-Amin, T. Katsuragi, T. Sato, N. Ono, and S. Kanaya, “An unsupervised approach to predict functional relations between genes based on expression data,” BioMed Research International, vol. 2014, Article ID 154594, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Emmert-Streib, M. Dehmer, and B. Haibe-Kains, “Untangling statistical and biological models to understand network inference: the need for a genomics network ontology,” Frontiers in Genetics, vol. 5, pp. 1–6, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. T. S. Furey, “ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions,” Nature Reviews Genetics, vol. 13, no. 12, pp. 840–852, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. D. C. Grainger, D. Hurd, M. Harrison, J. Holdstock, and S. J. W. Busby, “Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17693–17698, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Geertz and S. J. Maerkl, “Experimental strategies for studying transcription factor-DNA binding specificities,” Briefings in Functional Genomics, vol. 9, no. 5-6, pp. 362–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. K. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction, Radius Press, New York, NY, USA, 1991.
  39. J. Lee Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–66, 1988. View at Publisher · View at Google Scholar
  40. J. J. Faith, B. Hayete, J. T. Thaden et al., “Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles,” PLoS Biology, vol. 5, no. 1, pp. 54–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Gentleman, V. J. Carey, W. Huber, R. A. Irizarry, and S. Dudoit, Eds., Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer, New York, NY, USA, 2005. View at Publisher · View at Google Scholar
  42. M. K. S. Yeung, J. Tegnér, and J. J. Collins, “Reverse engineering gene networks using singular value decomposition and robust regression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 9, pp. 6163–6168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Emmert-Streib, G. V. Glazko, G. Altay, and R. de Matos Simoes, “Statistical inference and reverse engineering of gene regulatory networks from observational expression data,” Frontiers in Genetics, vol. 3, pp. 1–15, 2012. View at Google Scholar
  44. A.-L. Barabási and Z. N. Oltvai, “Network biology: understanding the cell's functional organization,” Nature Reviews Genetics, vol. 5, no. 2, pp. 101–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Guelzim, S. Bottani, P. Bourgine, and F. Képès, “Topological and causal structure of the yeast transcriptional regulatory network,” Nature Genetics, vol. 31, no. 1, pp. 60–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Vázquez, R. Dobrin, D. Sergi, J.-P. Eckmann, Z. N. Oltvai, and A.-L. Barabási, “The topological relationship between the large-scale attributes and local interaction patterns of complex networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 52, pp. 17940–17945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. M. Babu and S. A. Teichmann, “Evolution of transcription factors and the gene regulatory network in Escherichia coli,” Nucleic Acids Research, vol. 31, no. 4, pp. 1234–1244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. H.-W. Ma, J. Buer, and A.-P. Zeng, “Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach,” BMC Bioinformatics, vol. 5, article 199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Yu and M. Gerstein, “Genomic analysis of the hierarchical structure of regulatory networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 40, pp. 14724–14731, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Görke and J. Stülke, “Carbon catabolite repression in bacteria: many ways to make the most out of nutrients,” Nature Reviews Microbiology, vol. 6, no. 8, pp. 613–624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H.-W. Ma, B. Kumar, U. Ditges, F. Gunzer, J. Buer, and A.-P. Zeng, “An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs,” Nucleic Acids Research, vol. 32, no. 22, pp. 6643–6649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. N. M. Luscombe, M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann, and M. Gerstein, “Genomic analysis of regulatory network dynamics reveals large topological changes,” Nature, vol. 431, no. 7006, pp. 308–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers, “BioGRID: a general repository for interaction datasets,” Nucleic Acids Research, vol. 34, supplement 1, pp. D535–D539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Schomburg, A. Chang, C. Ebeling et al., “BRENDA, the enzyme database: updates and major new developments,” Nucleic Acids Research, vol. 32, pp. D431–D433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Hastings, P. De Matos, A. Dekker et al., “The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013,” Nucleic Acids Research, vol. 41, no. 1, pp. D456–D463, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. H. E. Pence and A. Williams, “Chemspider: an online chemical information resource,” Journal of Chemical Education, vol. 87, no. 11, pp. 1123–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Xenarios, Ł. Salwínski, X. J. Duan, P. Higney, S.-M. Kim, and D. Eisenberg, “DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions,” Nucleic Acids Research, vol. 30, no. 1, pp. 303–305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. I. M. Keseler, A. Mackie, M. Peralta-Gil et al., “EcoCyc: fusing model organism databases with systems biology,” Nucleic Acids Research, vol. 41, no. 1, pp. D605–D612, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. D. A. Benson, M. Cavanaugh, K. Clark et al., “GenBank,” Nucleic Acids Research, vol. 41, no. 1, pp. D36–D42, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology. The Gene Ontology Consortium,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Google Scholar
  61. S. Orchard, M. Ammari, B. Aranda et al., “The MIntAct project—intAct as a common curation platform for 11 molecular interaction databases,” Nucleic Acids Research, vol. 42, no. 1, pp. D358–D363, 2014. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Mitchell, H.-Y. Chang, L. Daugherty et al., “The InterPro protein families database: the classification resource after 15 years,” Nucleic Acids Research, vol. 43, no. 1, pp. D213–D221, 2015. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. F. M. Afendi, T. Okada, M. Yamazaki et al., “KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research,” Plant and Cell Physiology, vol. 53, no. 2, p. e1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Nakamura, F. Mochamad Afendi, A. Kawsar Parvin et al., “KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities,” Plant and Cell Physiology, vol. 55, no. 1, article e7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Haug, R. M. Salek, P. Conesa et al., “MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data,” Nucleic Acids Research, vol. 41, no. 1, pp. D781–D786, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Caspi, T. Altman, R. Billington et al., “The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases,” Nucleic Acids Research, vol. 42, no. 1, pp. 459–471, 2014. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A. McKusick, “Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders,” Nucleic Acids Research, vol. 33, supplement 1, pp. D514–D517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. M. K. Matlock, A. S. Holehouse, and K. M. Naegle, “ProteomeScout: a repository and analysis resource for post-translational modifications and proteins,” Nucleic Acids Research, vol. 43, no. 1, pp. D521–D530, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant, “PubChem: integrated platform of small molecules and biological activities,” in Annual Reports in Computational Chemistry, R. A. Wheeler and D. C. Spellmeyer, Eds., pp. 217–241, Elsevier, 2008. View at Google Scholar
  71. M. Milacic, R. Haw, K. Rothfels et al., “Annotating cancer variants and anti-cancer therapeutics in Reactome,” Cancers, vol. 4, no. 4, pp. 1180–1211, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Croft, A. F. Mundo, R. Haw et al., “The Reactome pathway knowledgebase,” Nucleic Acids Research, vol. 42, no. 1, pp. D472–D477, 2014. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Salgado, M. Peralta-Gil, S. Gama-Castro et al., “RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more,” Nucleic Acids Research, vol. 41, no. 1, pp. D203–D213, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. L. J. Jensen, M. Kuhn, M. Stark et al., “STRING 8—a global view on proteins and their functional interactions in 630 organisms,” Nucleic Acids Research, vol. 37, supplement 1, pp. 412–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Lamesch, T. Z. Berardini, D. Li et al., “The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools,” Nucleic Acids Research, vol. 40, no. 1, pp. D1202–D1210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Matys, O. V. Kel-Margoulis, E. Fricke et al., “TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes,” Nucleic Acids Research., vol. 34, pp. D108–D110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Krull, S. Pistor, N. Voss et al., “TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations,” Nucleic Acids Research, vol. 34, supplement 1, pp. D546–D551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. The UniProt Consortium, “UniProt: a hub for protein information,” Nucleic Acids Research, vol. 43, no. 1, pp. D204–D212, 2015. View at Publisher · View at Google Scholar
  79. P. Uetz, B. Titz, and G. Cagney, “Experimental methods for protein interaction identification and characterization,” in Protein-Protein Interactions and Networks, A. Panchenko and T. Przytycka, Eds., pp. 1–32, Springer, London, UK, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  80. V. S. Rao, K. Srinivas, G. N. Sujini, and G. N. Kumar, “Protein-protein interaction detection: methods and analysis,” International Journal of Proteomics, vol. 2014, Article ID 147648, 12 pages, 2014. View at Publisher · View at Google Scholar
  81. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A comprehensive two-hybrid analysis to explore the yeast protein interactome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4569–4574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Terpe, “Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems,” Applied Microbiology and Biotechnology, vol. 60, no. 5, pp. 523–533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Fields and O.-K. Song, “A novel genetic system to detect protein-protein interactions,” Nature, vol. 340, no. 6230, pp. 245–246, 1989. View at Publisher · View at Google Scholar · View at Scopus
  84. J. K. Joung, E. I. Ramm, and C. O. Pabo, “A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7382–7387, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. S. V. Rajagopala, P. Sikorski, A. Kumar et al., “The binary protein-protein interaction landscape of Escherichia coli,” Nature Biotechnology, vol. 32, no. 3, pp. 285–290, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Li, C. M. Armstrong, N. Bertin et al., “A map of the interactome network of the metazoan C. elegans,” Science, vol. 303, no. 5657, pp. 540–543, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Formstecher, S. Aresta, V. Collura et al., “Protein interaction mapping: a Drosophila case study,” Genome Research, vol. 15, no. 3, pp. 376–384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. U. Stelzl, U. Worm, M. Lalowski et al., “A human protein-protein interaction network: a resource for annotating the proteome,” Cell, vol. 122, no. 6, pp. 957–968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann, and B. Séraphin, “A generic protein purification method for protein complex characterization and proteome exploration,” Nature Biotechnology, vol. 17, no. 10, pp. 1030–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. O. Puig, F. Caspary, G. Rigaut et al., “The tandem affinity purification (TAP) method: a general procedure of protein complex purification,” Methods, vol. 24, no. 3, pp. 218–229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Ho, A. Gruhler, A. Heilbut et al., “Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry,” Nature, vol. 415, no. 6868, pp. 180–183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. A.-C. Gavin, M. Bösche, R. Krause et al., “Functional organization of the yeast proteome by systematic analysis of protein complexes,” Nature, vol. 415, no. 6868, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Altaf-Ul-Amin,, M. Wada, and S. Kanaya, “Partitioning a PPI network into overlapping modules constrained by high-density and periphery tracking,” ISRN Biomathematics, vol. 2012, Article ID 726429, 11 pages, 2012. View at Publisher · View at Google Scholar
  94. G. D. Bader and C. W. V. Hogue, “An automated method for finding molecular complexes in large protein interaction networks,” BMC Bioinformatics, vol. 4, article 2, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Wu, X. Li, C.-K. Kwoh, and S.-K. Ng, “A core-attachment based method to detect protein complexes in PPI networks,” BMC Bioinformatics, vol. 10, article 169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. H. C. M. Leung, Q. Xiang, S. M. Yiu, and F. Y. L. Chin, “Predicting protein complexes from PPI data: a core-attachment approach,” Journal of Computational Biology, vol. 16, no. 2, pp. 133–144, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  97. M. W. Hahn and A. D. Kern, “Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks,” Molecular Biology and Evolution, vol. 22, no. 4, pp. 803–806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977. View at Publisher · View at Google Scholar
  99. M. E. J. Newman, “The mathematics of networks,” in The New Palgrave Dictionary of Economics, S. N. Durlauf and and L. E. Blume, Eds., pp. 465–470, Nature Publishing Group, Basingstoke, UK, 2008. View at Google Scholar
  100. M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya, “Development and implementation of an algorithm for detection of protein complexes in large interaction networks,” BMC Bioinformatics, vol. 7, article 207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Erdös and A. Rényi, “On the evolution of random graphs,” Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 5, pp. 17–60, 1959. View at Google Scholar · View at MathSciNet
  102. B. Ø. Palsson, Systems Biology, Cambridge University Press, Cambridge, UK, 2006.
  103. Z. A. King, C. J. Lloyd, A. M. Feist, and B. O. Palsson, “Next-generation genome-scale models for metabolic engineering,” Current Opinion in Biotechnology, vol. 35, pp. 23–29, 2015. View at Publisher · View at Google Scholar · View at Scopus
  104. I. Koch, B. H. Junker, and M. Heiner, “Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber,” Bioinformatics, vol. 21, no. 7, pp. 1219–1226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano, “Biopathways representation and simulation on hybrid functional petri net,” Studies in Health Technology and Informatics, vol. 162, pp. 77–91, 2011. View at Google Scholar
  106. H. Jeong, B. Tombor, R. Albert, Z. N. Oltval, and A.-L. Barabásl, “The large-scale organization of metabolic networks,” Nature, vol. 407, no. 6804, pp. 651–654, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Ma and A.-P. Zeng, “Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms,” Bioinformatics, vol. 19, no. 2, pp. 270–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–276, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, “Hierarchical organization of modularity in metabolic networks,” Science, vol. 297, no. 5586, pp. 1551–1555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Zhu and Z. S. Qin, “Structural comparison of metabolic networks in selected single cell organisms,” BMC Bioinformatics, vol. 6, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Parter, N. Kashtan, and U. Alon, “Environmental variability and modularity of bacterial metabolic networks,” BMC Evolutionary Biology, vol. 7, article 169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Takemoto, J. C. Nacher, and T. Akutsu, “Correlation between structure and temperature in prokaryotic metabolic networks,” BMC Bioinformatics, vol. 8, article 303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Mazurie, D. Bonchev, B. Schwikowski, and G. A. Buck, “Evolution of metabolic network organization,” BMC Systems Biology, vol. 4, article 59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach, Systems Biology in Practice: Concepts, Implementation and Application, Wiley-Blackwell, 2006.
  115. D. R. Hyduke and B. O. Palsson, “Towards genome-scale signalling-network reconstructions,” Nature Reviews Genetics, vol. 11, no. 4, pp. 297–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Franke, M. Müller, N. Wundrack et al., “Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction,” BMC Systems Biology, vol. 2, article 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. X. Chen, H. Xu, P. Yuan et al., “Integration of external signaling pathways with the core transcriptional network in embryonic stem cells,” Cell, vol. 133, no. 6, pp. 1106–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. J. A. Papin, T. Hunter, B. O. Palsson, and S. Subramaniam, “Reconstruction of cellular signalling networks and analysis of their properties,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2, pp. 99–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. A. H. Singh, D. M. Wolf, P. Wang, and A. P. Arkin, “Modularity of stress response evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 21, pp. 7500–7505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. A. P. Potapov, “Signal transduction and gene regulation networks,” in Analysis of Biological Networks, B. H. Junker and F. Schreiber, Eds., John Wiley & Sons, 2008. View at Google Scholar
  122. M. Krull, N. Voss, C. Choi, S. Pistor, A. Potapov, and E. Wingender, “TRANSPATH: an integrated database on signal transduction and a tool for array analysis,” Nucleic Acids Research, vol. 31, no. 1, pp. 97–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. L. Nie, X. Yang, I. Adcock, Z. Xu, and Y. Guo, “Inferring cell-scale signalling networks via compressive sensing,” PLoS ONE, vol. 9, no. 4, Article ID e95326, 2014. View at Publisher · View at Google Scholar · View at Scopus