Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 575837, 10 pages
http://dx.doi.org/10.1155/2015/575837
Research Article

Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Insulin-Producing Cells: Evidence for Further Maturation In Vivo

1Department of Biotechnology, Urology and Nephrology Center, Mansoura 35516, Egypt
2Department of Nephrology, Urology and Nephrology Center, Mansoura 35516, Egypt
3Department of Pathology, Urology and Nephrology Center, Mansoura 35516, Egypt
4Department of Immunology, Urology and Nephrology Center, Mansoura 35516, Egypt
5Department of Urology, Urology and Nephrology Center, Mansoura 35516, Egypt

Received 5 November 2014; Accepted 11 January 2015

Academic Editor: Aaron W. James

Copyright © 2015 Mahmoud M. Gabr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Zimmet, K. G. Alberti, and J. Shaw, “Global and societal implications of the diabetes epidemic,” Nature, vol. 414, no. 6865, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. Ryan, B. W. Paty, P. A. Senior et al., “Five-year follow-up after clinical islet transplantation,” Diabetes, vol. 54, no. 7, pp. 2060–2069, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. E. Koro, S. J. Bowlin, N. Bourgeois, and D. O. Fedder, “Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes: a preliminary report,” Diabetes Care, vol. 27, no. 1, pp. 17–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Lumelsky, O. Blondel, P. Laeng, I. Velasco, R. Ravin, and R. McKay, “Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets,” Science, vol. 292, no. 5520, pp. 1389–1394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Segev, B. Fishman, A. Ziskind, M. Shulman, and J. Itskovitz-Eldor, “Differentiation of human embryonic stem cells into insulin-producing clusters,” Stem Cells, vol. 22, no. 3, pp. 265–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Kroon, L. A. Martinson, K. Kadoya et al., “Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo,” Nature Biotechnology, vol. 26, no. 4, pp. 443–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Wang, Y. Huang, Q. Guo et al., “Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA,” Diabetes Research and Clinical Practice, vol. 104, no. 3, pp. 383–392, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kuroda, S. Yasuda, and Y. Sato, “Tumorigenicity studies for human pluripotent stem cell-derived products,” Biological and Pharmaceutical Bulletin, vol. 36, no. 2, pp. 189–192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-S. Wang, J.-F. Shyu, W.-S. Shen et al., “Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice,” Cell Transplantation, vol. 20, no. 3, pp. 455–466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Denner, Y. Bodenburg, J. G. Zhao et al., “Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin,” Cell Proliferation, vol. 40, no. 3, pp. 367–380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Sun, L. Chen, X.-G. Hou et al., “Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro,” Chinese Medical Journal, vol. 120, no. 9, pp. 771–776, 2007. View at Google Scholar · View at Scopus
  13. O. Karnieli, Y. Izhar-Prato, S. Bulvik, and S. Efrat, “Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation,” Stem Cells, vol. 25, no. 11, pp. 2837–2844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Gabr, M. M. Zakaria, A. F. Refaie et al., “Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice,” Cell Transplantation, vol. 22, no. 1, pp. 133–145, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Timper, D. Seboek, M. Eberhardt et al., “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells,” Biochemical and Biophysical Research Communications, vol. 341, no. 4, pp. 1135–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Evans-Molina, G. L. Vestermark, and R. G. Mirmira, “Development of insulin-producing cells from primitive biologic precursors,” Current Opinion in Organ Transplantation, vol. 14, no. 1, pp. 56–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. M. Gabr, M. M. Zakaria, A. F. Refaie et al., “Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols,” BioMed Research International, vol. 2014, Article ID 832736, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. S. H. Oh, T. M. Muzzonigrow, S. H. Bae, J. M. La Plante, H. M. Hatch, and B. E. Peterson, “Adult bone marrow-derived cells transdifferentiating into insulin-producing cells for the treatment of type 1 diabetes,” Laboratory Investigation, vol. 84, no. 5, pp. 507–5017, 2004. View at Google Scholar
  19. S. M. Phadnis, M. V. Joglekar, M. P. Dalvi et al., “Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo,” Cytotherapy, vol. 13, no. 3, pp. 279–293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Tayaramma, B. Ma, M. Rohde, and H. Mayer, “Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells,” Stem Cells, vol. 24, no. 12, pp. 2858–2867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids Research, vol. 29, no. 9, article e45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. E. M. Horwitz and A. Keating, “Nonhematopoietic mesenchymal stem cells: what are they?” Cytotherapy, vol. 2, no. 5, pp. 387–388, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Gimble, F. Guilak, M. E. Nuttall, S. Sathishkumar, M. Vidal, and B. A. Bunnell, “In vitro differentiation potential of mesenchymal stem cells,” Transfusion Medicine and Hemotherapy, vol. 35, no. 3, pp. 228–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. E. M. Horwitz, K. Le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: The international society for cellular therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Dominici, K. le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Moriscot, F. de Fraipont, M.-J. Richard et al., “Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro,” Stem Cells, vol. 23, no. 4, pp. 594–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Neshati, M. M. Matin, A. R. Bahrami, and A. Moghimi, “Differentiation of mesenchymal stem cells to insulin-producing cells and their impact on type 1 diabetic rats,” Journal of Physiology and Biochemistry, vol. 66, no. 2, pp. 181–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. R. Bhonde, P. Sheshadri, S. Sharma, and A. Kumar, “Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors,” International Journal of Biochemistry and Cell Biology, vol. 46, no. 1, pp. 90–102, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Milanesi, J.-W. Lee, Z. Li et al., “β-Cell regeneration mediated by human bone marrow mesenchymal stem cells,” PLoS ONE, vol. 7, no. 8, Article ID e42177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Hardikar and R. R. Bhonde, “Modulating experimental diabetes by treatment with cytosolic extract from the regenerating pancreas,” Diabetes Research and Clinical Practice, vol. 46, no. 3, pp. 203–211, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. K. S. Choi, J.-S. Shin, J.-J. Lee, Y. S. Kim, S.-B. Kim, and C.-W. Kim, “In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract,” Biochemical and Biophysical Research Communications, vol. 330, no. 4, pp. 1299–1305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Reyes, T. Lund, T. Lenvik, D. Aguiar, L. Koodie, and C. M. Verfaillie, “Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells,” Blood, vol. 98, no. 9, pp. 2615–2625, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Nombela-Arrieta, J. Ritz, and L. E. Silberstein, “The elusive nature and function of mesenchymal stem cells,” Nature Reviews Molecular Cell Biology, vol. 12, no. 2, pp. 126–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Wiese, A. Rolletschek, G. Kania et al., “Nestin expression—a property of multi-lineage progenitor cells?” Cellular and Molecular Life Sciences, vol. 61, no. 19-20, pp. 2510–2522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Kabos, M. Ehtesham, A. Kabosova, K. L. Black, and J. S. Yu, “Generation of neural progenitor cells from whole adult bone marrow,” Experimental Neurology, vol. 178, no. 2, pp. 288–293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Milanesi, J.-W. Lee, Q. Xu, L. Perin, and J. S. Yu, “Differentiation of nestin-positive cells derived from bone marrow into pancreatic endocrine and ductal cells in vitro,” Journal of Endocrinology, vol. 209, no. 2, pp. 193–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Kuroda, M. Kitada, S. Wakao et al., “Unique multipotent cells in adult human mesenchymal cell populations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8639–8643, 2010. View at Publisher · View at Google Scholar · View at Scopus