Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 591475, 10 pages
http://dx.doi.org/10.1155/2015/591475
Research Article

Building a Framework for a Dual Task Taxonomy

1Department of Physical Therapy, Arizona School of Health Sciences, A.T. Still University, Mesa, AZ 85206, USA
2Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY 11794, USA

Received 16 September 2014; Revised 23 February 2015; Accepted 3 March 2015

Academic Editor: Erwin van Wegen

Copyright © 2015 Tara L. McIsaac et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Schenkman, J. E. Deutsch, and K. M. Gill-Body, “An integrated framework for decision making in neurologic physical therapist practice,” Physical Therapy, vol. 86, no. 12, pp. 1681–1702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Gentile, “Skill acquisition: action, movement and neuromotor processes,” in Movement Science: Foundations for Physical Therapy in Rehabilitation, J. Carr and R. Shepherd, Eds., pp. 111–187, Aspen, Frederick, Md, USA, 2000. View at Google Scholar
  3. B. S. Bloom, Taxonomy of Educational Objectives Handbook 1: Cognitive Domain, Longman, New York, NY, USA, 2nd edition, 1984.
  4. A. B. Markman and C. M. Brendl, “Constraining theories of embodied cognition,” Psychological Science, vol. 16, no. 1, pp. 6–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Wilson, “Six views of embodied cognition,” Psychonomic Bulletin and Review, vol. 9, no. 4, pp. 625–636, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Plummer, G. Eskes, S. Wallace et al., “Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research,” Archives of Physical Medicine and Rehabilitation, vol. 94, no. 12, pp. 2565–2574, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Chawla, S. Walia, M. Behari, and M. M. Noohu, “Effect of type of secondary task on cued gait on people with idiopathic Parkinson's disease,” Journal of Neurosciences in Rural Practice, vol. 5, no. 1, pp. 18–23, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Galletly and S. G. Brauer, “Does the type of concurrent task affect preferred and cued gait in people with Parkinson's disease?” Australian Journal of Physiotherapy, vol. 51, no. 3, pp. 175–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. D. Wickens, “Multiple resources and performance prediction,” Theoretical Issues in Ergonomics Science, vol. 3, no. 2, pp. 159–177, 2002. View at Publisher · View at Google Scholar
  10. S. O'Shea, M. E. Morris, and R. Iansek, “Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks,” Physical Therapy, vol. 82, no. 9, pp. 888–897, 2002. View at Google Scholar · View at Scopus
  11. R. Marois and J. Ivanoff, “Capacity limits of information processing in the brain,” Trends in Cognitive Sciences, vol. 9, no. 6, pp. 296–305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Shumway-Cook and M. Woollacott, Motor Control: Translating Research into Clinical Practice, Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2012.
  13. J. M. Honce, “Gray matter pathology in MS: neuroimaging and clinical correlations,” Multiple Sclererosis International, vol. 2013, Article ID 627870, 16 pages, 2013. View at Publisher · View at Google Scholar
  14. B. Dubois and B. Pillon, “Cognitive deficits in Parkinson's disease,” Journal of Neurology, vol. 244, no. 1, pp. 2–8, 1996. View at Google Scholar · View at Scopus
  15. D. A. Norman and D. G. Bobrow, “On data-limited and resource-limited processes,” Cognitive Psychology, vol. 7, no. 1, pp. 44–64, 1975. View at Publisher · View at Google Scholar · View at Scopus
  16. K.-C. Siu and M. H. Woollacott, “Attentional demands of postural control: the ability to selectively allocate information-processing resources,” Gait and Posture, vol. 25, no. 1, pp. 121–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Shaw, J. L. Huffman, J. S. Frank, M. S. Jog, and A. L. Adkin, “The effects of skill focused instructions on walking performance depend on movement constraints in Parkinson's disease,” Gait and Posture, vol. 33, no. 1, pp. 119–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Cools, R. A. Barker, B. J. Sahakian, and T. W. Robbins, “Mechanisms of cognitive set flexibility in Parkinson's disease,” Brain, vol. 124, no. 12, pp. 2503–2512, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Huxhold, S.-C. Li, F. Schmiedek, and U. Lindenberger, “Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention,” Brain Research Bulletin, vol. 69, no. 3, pp. 294–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. V. E. Kelly, A. A. Janke, and A. Shumway-Cook, “Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults,” Experimental Brain Research, vol. 207, no. 1-2, pp. 65–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Srygley, A. Mirelman, T. Herman, N. Giladi, and J. M. Hausdorff, “When does walking alter thinking? Age and task associated findings,” Brain Research, vol. 1253, pp. 92–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Gentile, “A working model of skill acquisition with application to teaching,” Quest, vol. 17, no. 1, pp. 3–23, 1972. View at Publisher · View at Google Scholar
  23. K. M. Newell, “Motor skill acquisition,” Annual Review of Psychology, vol. 42, no. 1, pp. 213–237, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Gordon, H. Forssberg, R. S. Johansson, A. C. Eliasson, and G. Westling, “Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces,” Experimental Brain Research, vol. 90, no. 2, pp. 399–403, 1992. View at Google Scholar · View at Scopus
  25. Y. Lajoie, N. Teasdale, C. Bard, and M. Fleury, “Attentional demands for static and dynamic equilibrium,” Experimental Brain Research, vol. 97, no. 1, pp. 139–144, 1993. View at Google Scholar · View at Scopus
  26. A. E. Patla, “How is human gait controlled by vision?” Ecological Psychology, vol. 10, no. 3-4, pp. 287–302, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Bernstein, The Coordination and Regulation of Movements, Pergamon Press, Oxford, UK, 1967.
  28. M. P. Boisgontier, I. A. M. Beets, J. Duysens, A. Nieuwboer, R. T. Krampe, and S. P. Swinnen, “Age-related differences in attentional cost associated with postural dual tasks: increased recruitment of generic cognitive resources in older adults,” Neuroscience and Biobehavioral Reviews, vol. 37, no. 8, pp. 1824–1837, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Gysin, T. R. Kaminski, C. J. Hass, C. E. Grobet, and A. M. Gordon, “Effects of gait variations on grip force coordination during object transport,” Journal of Neurophysiology, vol. 100, no. 5, pp. 2477–2485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Glasauer, A. Stein, A. L. Günther, V. L. Flanagin, K. Jahn, and T. Brandt, “The effect of dual tasks in locomotor path integration,” Annals of the New York Academy of Sciences, vol. 1164, pp. 201–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. L. L. Saling and J. G. Phillips, “Automatic behaviour: Efficient not mindless,” Brain Research Bulletin, vol. 73, no. 1–3, pp. 1–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. E. M. Lamberg and L. M. Muratori, “Cell phones change the way we walk,” Gait & Posture, vol. 35, no. 4, pp. 688–690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. P. M. Fitts, “The information capacity of the human motor system in controlling the amplitude of movement,” Journal of Experimental Psychology, vol. 47, no. 6, pp. 381–391, 1954. View at Publisher · View at Google Scholar · View at Scopus
  34. S. T. Klapp, “Motor response programming during simple choice reaction time: the role of practice,” Journal of Experimental Psychology: Human Perception and Performance, vol. 21, no. 5, pp. 1015–1027, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, and J. T. Quinn, “Motor-output variability: a theory for the accuracy of rapid motor acts,” Psychological Review, vol. 86, no. 5, pp. 415–451, 1979. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. G. van Merriënboer, L. Kester, and F. Paas, “Teaching complex rather than simple tasks: balancing intrinsic and germane load to enhance transfer of learning,” Applied Cognitive Psychology, vol. 20, no. 3, pp. 343–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Wulf and C. H. Shea, “Principles derived from the study of simple skills do not generalize to complex skill learning,” Psychonomic Bulletin & Review, vol. 9, no. 2, pp. 185–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. R. Berard, J. Fung, and A. Lamontagne, “Evidence for the use of rotational optic flow cues for locomotor steering in healthy older adults,” Journal of Neurophysiology, vol. 106, no. 3, pp. 1089–1096, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Vitório, E. Lirani-Silva, F. A. Barbieri, V. Raile, F. Stella, and L. T. B. Gobbi, “Influence of visual feedback sampling on obstacle crossing behavior in people with Parkinson's disease,” Gait and Posture, vol. 38, no. 2, pp. 330–334, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Guadagnoli and T. D. Lee, “Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning,” Journal of Motor Behavior, vol. 36, no. 2, pp. 212–224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Yogev-Seligmann, J. M. Hausdorff, and N. Giladi, “Do we always prioritize balance when walking? Towards an integrated model of task prioritization,” Movement Disorders, vol. 27, no. 6, pp. 765–770, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Habeck, H. J. Hilton, E. Zarahn, J. Flynn, J. Moeller, and Y. Stern, “Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory,” NeuroImage, vol. 20, no. 3, pp. 1723–1733, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. J. J. G. van Merriënboer and J. Sweller, “Cognitive load theory and complex learning: recent developments and future directions,” Educational Psychology Review, vol. 17, no. 2, pp. 147–177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Paas, A. Renkl, and J. Sweller, “Cognitive load theory: instructional implications of the interaction between information structures and cognitive architecture,” Instructional Science, vol. 32, no. 1-2, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Sweller, P. Ayres, and S. Kalyuga, “Emerging themes in cognitive load theory: the transient information and the collective working memory effects,” in Cognitive Load Theory, vol. 1 of Explorations in the Learning Sciences, Instructional Systems and Performance Technologies, pp. 219–233, Springer, New York, NY, USA, 2011. View at Publisher · View at Google Scholar
  46. L. A. Brown, N. C. McKenzie, and J. B. Doan, “Age-dependent differences in the attentional demands of obstacle negotiation,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 60, no. 7, pp. 924–927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. C. D. Hall, K. V. Echt, S. L. Wolf, and W. A. Rogers, “Cognitive and motor mechanisms underlying older adults' ability to divide attention while walking,” Physical Therapy, vol. 91, no. 7, pp. 1039–1050, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Plummer-D'Amato, B. Brancato, M. Dantowitz, S. Birken, C. Bonke, and E. Furey, “Effects of gait and cognitive task difficulty on cognitive-motor interference in aging,” Journal of Aging Research, vol. 2012, Article ID 583894, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Theill, M. Martin, V. Schumacher, S. A. Bridenbaugh, and R. W. Kressig, “Simultaneously measuring gait and cognitive performance in cognitively healthy and cognitively impaired older adults: the Basel motor-cognition dual-task paradigm,” Journal of the American Geriatrics Society, vol. 59, no. 6, pp. 1012–1018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. O. Bock, “Dual-task costs while walking increase in old age for some, but not for other tasks: an experimental study of healthy young and elderly persons,” Journal of NeuroEngineering and Rehabilitation, vol. 5, article 27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Dromey and A. Benson, “Effects of concurrent motor, linguistic, or cognitive tasks on speech motor performance,” Journal of Speech, Language, and Hearing Research, vol. 46, no. 5, pp. 1234–1246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Kemper, R. E. Herman, and C. H. T. Lian, “The costs of doing two things at once for young and older adults: talking while walking, finger tapping, and ignoring speech or noise,” Psychology and Aging, vol. 18, no. 2, pp. 181–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. U. Laessoe, H. C. Hoeck, O. Simonsen, and M. Voigt, “Residual attentional capacity amongst young and elderly during dual and triple task walking,” Human Movement Science, vol. 27, no. 3, pp. 496–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Rochester, V. Hetherington, D. Jones et al., “Attending to the task: interference effects of functional tasks on walking in Parkinson's disease and the roles of cognition, depression, fatigue, and balance,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 10, pp. 1578–1585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Asai, S. Misu, T. Doi, M. Yamada, and H. Ando, “Effects of dual-tasking on control of trunk movement during gait: respective effect of manual- and cognitive-task,” Gait & Posture, vol. 39, no. 1, pp. 54–59, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Plotnik, Y. Dagan, T. Gurevich, N. Giladi, and J. M. Hausdorff, “Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson's disease suffering from motor response fluctuations,” Experimental Brain Research, vol. 208, no. 2, pp. 169–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J.-P. Azulay, S. Mesure, and O. Blin, “Influence of visual cues on gait in Parkinson's disease: contribution to attention or sensory dependence?” Journal of the Neurological Sciences, vol. 248, no. 1-2, pp. 192–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Cluff, T. Gharib, and R. Balasubramaniam, “Attentional influences on the performance of secondary physical tasks during posture control,” Experimental Brain Research, vol. 203, no. 4, pp. 647–658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Herath, T. Klingberg, J. Young, K. Amunts, and P. Roland, “Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study,” Cerebral Cortex, vol. 11, no. 9, pp. 796–805, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. G. D. Logan, “Cumulative progress in formal theories of attention,” Annual Review of Psychology, vol. 55, pp. 207–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Pashler, J. C. Johnston, and E. Ruthruff, “Attention and performance,” Annual Review of Psychology, vol. 52, no. 1, pp. 629–651, 2001. View at Publisher · View at Google Scholar · View at Scopus