Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 634768, 11 pages
http://dx.doi.org/10.1155/2015/634768
Research Article

Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods

1Department of Occupational Science & Technology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
2Rehabilitation Research Design and Disability (R2D2) Center, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
3Orthopaedic and Rehabilitation Engineering Center (OREC), Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233, USA
4Shriners Hospitals for Children—Chicago, Chicago, IL 60707, USA
5Physical Therapy Program, College of Health Sciences, Midwestern University, Downers Grove, IL 60515, USA

Received 17 March 2014; Revised 3 June 2014; Accepted 21 July 2014

Academic Editor: Alicia Koontz

Copyright © 2015 Brooke A. Slavens et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kaye, T. Kang, and M. LaPlante, “Mobility device use in the United States,” Disability Statistics Report, 2000. View at Google Scholar
  2. M. W. Brault and U.S. Census Bureau, Americans with Disabilities: 2010, U.S. Department of Commerce, Economics and Statistics Administration, U.S. Census Bureau, Washington, DC, USA, 2010.
  3. L. C. Vogel, K. M. Chlan, K. Zebracki, and C. J. Anderson, “Long-term outcomes of adults with pediatric-onset spinal cord injuries as a function of neurological impairment,” The Journal of Spinal Cord Medicine, vol. 34, no. 1, pp. 60–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. National Spinal Cord Injury Statistical Center, “Spinal cord injury facts and figures at a glance,” The Journal of Spinal Cord Medicine, vol. 36, no. 1, pp. 1–2, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Lal, “Premature degenerative shoulder changes in spinal cord injury patients,” Spinal Cord, vol. 36, no. 3, pp. 186–189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Mercer, M. Boninger, A. Koontz, D. Ren, T. Dyson-Hudson, and R. Cooper, “Shoulder joint kinetics and pathology in manual wheelchair users,” Clinical Biomechanics, vol. 21, no. 8, pp. 781–789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. E. Pentland and L. T. Twomey, “The weight-bearing upper extremity in women with long term paraplegia,” Paraplegia, vol. 29, no. 8, pp. 521–530, 1991. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Ballinger, D. Rintala, and K. Hart, “The relation of shoulder pain and range-of-motion problems to functional limitations, disability, and perceived health of men with spinal cord injury: a multifaceted longitudinal study,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 12, pp. 1575–1581, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. L. Boninger, J. D. Towers, R. A. Cooper, B. E. Dicianno, and M. C. Munin, “Shoulder imaging abnormalities in individuals with paraplegia,” Journal of Rehabilitation Research and Development, vol. 38, no. 4, pp. 401–408, 2001. View at Google Scholar · View at Scopus
  10. I. H. Sie, R. L. Waters, R. H. Adkins, and H. Gellman, “Upper extremity pain in the postrehabilitation spinal cord injured patient,” Archives of Physical Medicine and Rehabilitation, vol. 73, no. 1, pp. 44–48, 1992. View at Google Scholar · View at Scopus
  11. J. Yang, M. L. Boninger, J. D. Leath, S. G. Fitzgerald, T. A. Dyson-Hudson, and M. W. Chang, “Carpal tunnel syndrome in manual wheelchair users with spinal cord injury: a cross-sectional multicenter study,” American Journal of Physical Medicine and Rehabilitation, vol. 88, no. 12, pp. 1007–1016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Boninger, A. L. Souza, R. A. Cooper, S. G. Fitzgerald, A. M. Koontz, and B. T. Fay, “Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 5, pp. 718–723, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Boninger, A. M. Koontz, S. A. Sisto et al., “Pushrim biomechanics and injury prevention in spinal cord injury: recommendations based on CULP-SCI investigations,” Journal of Rehabilitation Research and Development, vol. 42, no. 3, pp. 9–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. L. Boninger, R. A. Cooper, M. A. Baldwin, S. D. Shimada, and A. Koontz, “Wheelchair pushrim kinetics: body weight and median nerve function,” Archives of Physical Medicine and Rehabilitation, vol. 80, no. 8, pp. 910–915, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Corfman, R. A. Cooper, M. L. Boninger, A. M. Koontz, and S. G. Fitzgerald, “Range of motion and stroke frequency differences between manual wheelchair propulsion and pushrim-activated power-assisted wheelchair propulsion,” Journal of Spinal Cord Medicine, vol. 26, no. 2, pp. 135–140, 2003. View at Google Scholar · View at Scopus
  16. J. L. Collinger, M. L. Boninger, A. M. Koontz et al., “Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 4, pp. 667–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Schnorenberg, B. A. Slavens, M. Wang, L. C. Vogel, P. A. Smith, and G. F. Harris, “Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility,” Journal of Biomechanics, vol. 47, no. 1, pp. 269–276, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. S. D. Shimada, R. N. Robertson, M. L. Bonninger, and R. A. Cooper, “Kinematic characterization of wheelchair propulsion,” Journal of Rehabilitation Research and Development, vol. 35, no. 2, pp. 210–218, 1998. View at Google Scholar · View at Scopus
  19. M. Šenk and L. Chèze, “A new method for motion capture of the scapula using an optoelectronic tracking device: a feasibility study,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 13, no. 3, pp. 397–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Wu, F. C. T. van der Helm, H. E. J. Veeger et al., “ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand,” Journal of Biomechanics, vol. 38, no. 5, pp. 981–992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Kwarciak, S. A. Sisto, M. Yarossi, R. Price, E. Komaroff, and M. L. Boninger, “Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 1, pp. 20–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. L. Boninger, M. Baldwin, R. A. Cooper, A. Koontz, and L. Chan, “Manual wheelchair pushrim biomechanics and axle position,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 5, pp. 608–613, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Gil-Agudo, A. Del Ama-Espinosa, E. Pérez-Rizo, S. Pérez-Nombela, and B. Crespo-Ruiz, “Shoulder joint kinetics during wheelchair propulsion on a treadmill at two different speeds in spinal cord injury patients,” Spinal Cord, vol. 48, no. 4, pp. 290–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C.-J. Lin, P.-C. Lin, F.-C. Su, and K.-N. An, “Biomechanics of wheelchair propulsion,” Journal of Mechanics in Medicine and Biology, vol. 9, no. 2, pp. 229–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. B. Morrow, W. J. Hurd, K. R. Kaufman, and K.-N. An, “Shoulder demands in manual wheelchair users across a spectrum of activities,” Journal of Electromyography and Kinesiology, vol. 20, no. 1, pp. 61–67, 2010. View at Publisher · View at Google Scholar · View at Scopus