About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2015 (2015), Article ID 648108, 7 pages
http://dx.doi.org/10.1155/2015/648108
Review Article

GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration

Skin Biology, Research & Development Department, 4122 Factoria Boulevard, SE Suite No. 200 Bellevue, WA 98006, USA

Received 21 November 2014; Revised 17 March 2015; Accepted 9 April 2015

Academic Editor: May Griffith

Copyright © 2015 Loren Pickart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Pickart, A Tripeptide from Human Serum Which Enhances the Growth of Neoplastic Hepatocytes and the Survival of Normal Hepatocytes, University of California, San Francisco, Calif, USA, 1973.
  2. L. Pickart, J. H. Freedman, W. J. Loker et al., “Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells,” Nature, vol. 288, no. 5792, pp. 715–717, 1980. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Pickart, “Use of GHL-Cu as a wound-healing and anti-inflammatory agent,” 1988, http://www.freepatentsonline.com/4760051.html.
  4. D. Downey, W. F. Larrabee Jr., V. Voci, and L. Pickart, “Acceleration of wound healing using glycyl-histidyl-lysine copper (II),” Surgical Forum, vol. 25, pp. 573–575, 1985. View at Google Scholar · View at Scopus
  5. L. Pickart, “Iamin: a human growth factor with multiple wound-healing properties,” in Biology of Copper Complexes, J. Sorenson, Ed., pp. 273–285, Humana Press, Clifton, NJ, USA, 1987. View at Google Scholar
  6. Y. Wegrowski, F. X. Maquart, and J. P. Borel, “Stimulation of sulfated glycosaminoglycan synthesis by the tripeptide-copper complex Glycyl-L-histidyl-L-lysine-Cu2+,” Life Sciences, vol. 51, no. 13, pp. 1049–1056, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Siméon, H. Emonard, W. Hornebeck, and F.-X. Maquart, “The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures,” Life Sciences, vol. 67, no. 18, pp. 2257–2265, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ehrlich, “Stimulation of skin healing in immunosuppressed rats,” in Proceedings of the Symposium on Collagen and Skin Repair, Reims, France, September 1991.
  9. A. Siméon, Y. Wegrowski, Y. Bontemps, and F.-X. Maquart, “Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+,” Journal of Investigative Dermatology, vol. 115, no. 6, pp. 962–968, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. McCormack, K. C. Nowak, and R. J. Koch, “The effect of copper tripeptide and tretinoin on growth factor production in a serum-free fibroblast model,” Archives of Facial Plastic Surgery, vol. 3, no. 1, pp. 28–32, 2001. View at Google Scholar · View at Scopus
  11. F. Buffoni, R. Pino, and A. Dal Pozzo, “Effect of tripeptide-copper complexes on the process of skin wound healing and on cultured fibroblasts,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 330, no. 3, pp. 345–360, 1995. View at Google Scholar · View at Scopus
  12. N. Y. Gul, A. Topal, I. T. Cangul, and K. Yanik, “The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits,” Veterinary Dermatology, vol. 19, no. 1, pp. 7–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. I. T. Cangul, N. Y. Gul, A. Topal, and R. Yilmaz, “Evaluation of the effects of topical tripeptide-copper complex and zinc oxide on open-wound healing in rabbits,” Veterinary Dermatology, vol. 17, no. 6, pp. 417–423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Pickart, “Method of using copper(II) containing compounds to accelerate wound healing,” 1992, http://www.freepatentsonline.com/5164367.html.
  15. V. Arul, R. Kartha, and R. Jayakumar, “A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices,” Life Sciences, vol. 80, no. 4, pp. 275–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. O. Canapp Jr., J. P. Farese, G. S. Schultz et al., “The effect of topical tripeptide-copper complex on healing of ischemic open wounds,” Veterinary Surgery, vol. 32, no. 6, pp. 515–523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. F. Swaim, D. M. Vaughn, S. A. Kincaid et al., “Effect of locally injected medications on healing of pad wounds in dogs,” American Journal of Veterinary Research, vol. 57, no. 3, pp. 394–399, 1996. View at Google Scholar · View at Scopus
  18. L. Pickart, “The human tri-peptide GHK and tissue remodeling,” Journal of Biomaterials Science, Polymer Edition, vol. 19, no. 8, pp. 969–988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Meiners and O. Eickelberg, “Next-generation personalized drug discovery: the tripeptide GHK hits center stage in chronic obstructive pulmonary disease,” Genome Medicine, vol. 4, no. 8, article 70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Hong, T. Downey, K. W. Eu, P. K. Koh, and P. Y. Cheah, “A ‘metastasis-prone’ signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics,” Clinical and Experimental Metastasis, vol. 27, no. 2, pp. 83–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Gruchlik, M. Jurzak, E. W. A. Chodurek, and Z. Dzierzewicz, “Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-α-dependent IL-6 secretion in normal human dermal fibroblasts,” Acta Poloniae Pharmaceutica, vol. 69, no. 6, pp. 1303–1306, 2012. View at Google Scholar · View at Scopus
  22. L. Pickart, J. M. Vasquez-Soltero, and A. Margolina, “GHK and DNA: resetting the human genome to health,” BioMed Research International, vol. 2014, Article ID 151479, 10 pages, 2014. View at Publisher · View at Google Scholar
  23. J. D. Campbell, J. E. McDonough, J. E. Zeskind, et al., “A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK,” Genome Medicine, vol. 4, article 67, 2012. View at Publisher · View at Google Scholar
  24. S. Boo and L. Dagnino, “Integrins as modulators of transforming growth factor beta signaling in dermal fibroblasts during skin regeneration after injury,” Advances in Wound Care, vol. 2, no. 5, pp. 238–246, 2013. View at Publisher · View at Google Scholar
  25. K. Lubick, M. Radke, and M. Jutila, “Securinine, a GABAA receptor antagonist, enhances macrophage clearance of phase II C. burnetii: comparison with TLR agonists,” Journal of Leukocyte Biology, vol. 82, no. 5, pp. 1062–1069, 2007. View at Publisher · View at Google Scholar
  26. L. E. Matalka, A. Ford, and M. T. Unlap, “The tripeptide, GHK, induces programmed cell death in SH-SY5Y neuroblastoma cells,” Journal of Biotechnology & Biomaterials, vol. 2, article 144, 2012. View at Publisher · View at Google Scholar
  27. L. Pickart, J. M. Vasquez-Soltero, F. D. Pickart, and J. Majnarich, “GHK, the human skin remodeling peptide, induces anti-cancer expression of numerous caspase, growth regulatory, and DNA repair genes,” Journal of Analytical Oncology, vol. 3, no. 2, pp. 79–87, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Kang, H. Choi, J. Na, et al., “Copper–GHK increases integrin expression and p63 positivity by keratinocytes,” Archives of Dermatological Research, vol. 301, no. 4, pp. 301–306, 2009. View at Publisher · View at Google Scholar
  29. H.-R. Choi, Y.-A. Kang, S.-J. Ryoo et al., “Stem cell recovering effect of copper-free GHK in skin,” Journal of Peptide Science, vol. 18, no. 11, pp. 685–690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Jose, M. L. Hughbanks, B. Y. K. Binder, G. C. Ingavle, and J. K. Leach, “Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels,” Acta Biomaterialia, vol. 10, no. 5, pp. 1955–1964, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. J. D. Pollard, S. Quan, T. Kang, and R. J. Koch, “Effects of copper tripeptide on the growth and expression of growth factors by normal and irradiated fibroblasts,” Archives of Facial Plastic Surgery, vol. 7, no. 1, pp. 27–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Abdulghani, A. Sherr, S. Shirin et al., “Effects of topical creams containing vitamin C, a copper-binding peptide cream and melatonin compared with tretinoin on the ultrastructure of normal skin—a pilot clinical, histologic, and ultrastructural study,” Disease Management and Clinical Outcomes, vol. 1, no. 4, pp. 136–141, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Leyden, T. Stephens, M. Finkey, Y. Appa, and S. Barkovic, “Skin care benefits of copper peptide containing facial cream,” in Proceedings of the American Academy of Dermatology Meeting, New York, NY, USA, February 2002.
  34. J. Leyden, T. Stephens, M. Finkey, and S. Barkovic, Skin Care Benefits of Copper Peptide Containing Eye Creams, University of Pennsylvania, 2002.
  35. M. Finkley, Y. Appa, and S. Bhandarkar, “Copper peptide and skin,” in Cosmeceuticals and Active Cosmetics: Drugs vs. Cosmetics, P. Elsner and H. Maibach, Eds., pp. 549–563, Marcel Dekker, New York, NY, USA, 2005. View at Google Scholar
  36. L. Mazurowska and M. Mojski, “Biological activities of selected peptides: skin penetration ability of copper complexes with peptides,” Journal of Cosmetic Science, vol. 59, no. 1, pp. 59–69, 2008. View at Google Scholar · View at Scopus
  37. J. J. Hostynek, F. Dreher, and H. I. Maibach, “Human skin retention and penetration of a copper tripeptide in vitro as function of skin layer towards anti-inflammatory therapy,” Inflammation Research, vol. 59, no. 11, pp. 983–988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. J. Hostynek, F. Dreher, and H. I. Maibach, “Human skin penetration of a copper tripeptide in vitro as a function of skin layer,” Inflammation Research, vol. 60, no. 1, pp. 79–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Arul, D. Gopinath, K. Gomathi, and R. Jayakumar, “Biotinylated GHK peptide incorporated collagenous matrix: a novel biomaterial for dermal wound healing in rats,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 73, no. 2, pp. 383–391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Badenhorst, D. Svirskis, and Z. Wu, “Physicochemical characterization of native glycyl-l-histidyl-l-lysine tripeptide for wound healing and anti-aging: a preformulation study for dermal delivery,” Pharmaceutical Development and Technology, 2014. View at Publisher · View at Google Scholar
  41. T. Ugurlu, M. Turkoglu, and T. Ozaydin, “In vitro evaluation of compression-coated glycyl-L-histidyl-L-lysine–Cu(II) (GHK–Cu2+)-loaded microparticles for colonic drug delivery,” Drug Development and Industrial Pharmacy, vol. 37, pp. 1282–1289, 2011. View at Publisher · View at Google Scholar
  42. L. Pickart, “Tissue protective and regenerative compositions,” 1995, http://www.freepatentsonline.com/5382431.html.
  43. L. Pickart, “Tissue protective and regenerative compositions,” 1996, http://www.freepatentsonline.com/5554375.html.
  44. H. Zhai, Y.-H. Leow, and H. I. Maibach, “Human barrier recovery after acute acetone perturbation: an irritant dermatitis model,” Clinical and Experimental Dermatology, vol. 23, no. 1, pp. 11–13, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Zhai, N. Poblete, and H. I. Maibach, “Sodium lauryl sulphate damaged skin in vivo in man: a water barrier repair model,” Skin Research and Technology, vol. 4, no. 1, pp. 24–27, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Zhai, N. Poblete, and H. I. Maibach, “Stripped skin model to predict irritation potential of topical agents in vivo in humans,” International Journal of Dermatology, vol. 37, no. 5, pp. 386–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Zhai, Y.-C. Chang, M. Singh, and H. I. Maibach, “In vivo nickel allergic contact dermatitis: human model for topical therapeutics,” Contact Dermatitis, vol. 40, no. 4, pp. 205–208, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. S. J. Lau and B. Sarkar, “The interaction of copper(II) and glycyl-L-histidyl-L-lysine, a growth-modulating tripeptide from plasma,” Biochemical Journal, vol. 199, no. 3, pp. 649–656, 1981. View at Google Scholar · View at Scopus
  49. C. M. Perkins, N. J. Rose, B. Weinstein, R. E. Stenkamp, L. H. Jensen, and L. Pickart, “The structure of a copper complex of the growth factor glycyl-L-histidyl-L-lysine at 1.1 Å resolution,” Inorganica Chimica Acta, vol. 82, no. 1, pp. 93–99, 1984. View at Publisher · View at Google Scholar · View at Scopus
  50. J. H. Freedman, L. Pickart, B. Weinstein, W. B. Mims, and J. Peisach, “Structure of the glycyl-L-histidyl-L-lysine-copper(II) complex in solution,” Biochemistry, vol. 21, no. 19, pp. 4540–4544, 1982. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Pickart and S. Lovejoy, “Biological activity of human plasma copper-binding growth factor glycyl-l-histidyl-l-lysine,” Methods in Enzymology, vol. 147, pp. 314–328, 1987. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Beretta, E. Arlandini, R. Artali, J. M. G. Anton, and R. Maffei Facino, “Acrolein sequestering ability of the endogenous tripeptide glycyl-histidyl-lysine (GHK): characterization of conjugation products by ESI-MSn and theoretical calculations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 3, pp. 596–602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Godet and P. J. Marie, “Effects of the tripeptide glycyl-L-histidyl-L-lysine copper complex on osteoblastic cell spreading, attachment and phenotype,” Cellular and Molecular Biology (Noisy-le-Grand, France), vol. 41, no. 8, pp. 1081–1091, 1995. View at Google Scholar · View at Scopus
  54. M. Kawase, N. Miura, N. Kurikawa et al., “Immobilization of tripepride growth factor glycyl-L-histidyl-L-lysine on poly(vinylalcohol)-quarternized stilbazole (PVA-SbQ) and its use as a ligand for hepatocyte attachment,” Biological and Pharmaceutical Bulletin, vol. 22, no. 9, pp. 999–1001, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. F.-X. Maquart, L. Pickart, M. Laurent, P. Gillery, J.-C. Monboisse, and J.-P. Borel, “Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+,” FEBS Letters, vol. 238, no. 2, pp. 343–346, 1988. View at Publisher · View at Google Scholar · View at Scopus
  56. T. F. Lane, M. L. Iruela-Arispe, R. S. Johnson, and E. H. Sage, “SPARC is a source of copper-binding peptides that stimulate angiogenesis,” Journal of Cell Biology, vol. 125, no. 4, pp. 929–943, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. G. S. Schultz and A. Wysocki, “Interactions between extracellular matrix and growth factors in wound healing,” Wound Repair and Regeneration, vol. 17, no. 2, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Y. Cherdakov, M. Y. Smakhtin, G. M. Dubrovin, V. T. Dudka, and I. I. Bobyntsev, “Synergetic antioxidant and reparative action of thymogen, dalargin and peptide Gly-His-Lys in tubular bone fractures,” Experimental Biology and Medicine, vol. 4, pp. 15–20, 2010. View at Google Scholar
  59. M. Y. Smakhtin, A. I. Konoplya, L. A. Severyanova, A. A. Kurtseva, and V. Y. Cherdakov, “Reparative activity of different functional group peptides in hepatopathyes,” Experimental Biology and Medicine, vol. 3, pp. 11–17, 2006. View at Google Scholar