Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 717509, 12 pages
http://dx.doi.org/10.1155/2015/717509
Review Article

Analysis of Chromosome 17 miRNAs and Their Importance in Medulloblastomas

1Laboratory of Research in Experimental Pathology, Hospital Infantil de Mexico Federico Gomez, Avenida Dr. Márquez 162, Colonia Doctores 06720, México, DF, Mexico
2Laboratory of Psicoacoustics and Auditivy Physiology, Hospital Infantil de Mexico Federico Gomez, Avenida Dr. Márquez 162, Colonia Doctores 06720, México, DF, Mexico

Received 6 June 2014; Revised 16 November 2014; Accepted 16 November 2014

Academic Editor: Elisa Giovannetti

Copyright © 2015 Sebastian López-Ochoa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ortega-Aznar, F. J. Romero-Vidal, J. De la Torre, J. Castellvi, and P. Nogues, “Neonatal tumors of the CNS: a report of 9 cases and a review,” Clinical Neuropathology, vol. 20, no. 5, pp. 181–189, 2001. View at Google Scholar · View at Scopus
  2. D. Mitchell, A. M. Rojiani, D. Richards, A. T. Yachnis, and S. Z. Powell, “Congenital CNS primitive neuroectodermal tumor: case report and review of the literature,” Pediatric Pathology and Laboratory Medicine, vol. 15, no. 6, pp. 949–956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. F. J. Romero-Vidal and A. Ortega-Aznar, “Diagnóstico por imagen: TAC/RMN,” in Tumores del Sistema Nervioso Central en el Adulto y en la Infancia. Enfoque Multidisciplinario Neurooncológico, M. A. Arraez, I. Herruzo, T. Acha, and M. Benavides, Eds., pp. 113–135, Nova Sidonia, Madrid, Spain, 2003. View at Google Scholar
  4. F. Giangaspero, C. G. Eberhart, and D. W. Ellison, “Medulloblastoma,” in WHO Classification of Tumours of the Nervous System, D. N. Louis, H. Ohgaki, O. D. Wiestler et al., Eds., IARC, Lyon, France, 2007. View at Google Scholar
  5. F. Giangaspero, L. Rigobello, M. Badiali et al., “Large-cell medulloblastomas: a distinct variant with highly aggressive behavior,” The American Journal of Surgical Pathology, vol. 16, no. 7, pp. 687–693, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. H. G. Brown, J. L. Kepner, E. J. Perlman et al., ““Large cell/anaplastic” medulloblastomas: a pediatric oncology group study,” Journal of Neuropathology & Experimental Neurology, vol. 59, no. 10, pp. 857–865, 2000. View at Google Scholar · View at Scopus
  7. J. M. Lamont, C. S. McManamy, A. D. Pearson, S. C. Clifford, and D. W. Ellison, “Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients,” Clinical Cancer Research, vol. 10, no. 16, pp. 5482–5493, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. McCabe, L. M. Bäcklund, H. S. Leong, K. Ichimura, and V. P. Collins, “Chromosome 17 alterations identify goodrisk and poor-risk tumors independently of clinical factors in medulloblastoma,” Neuro-Oncology, vol. 13, no. 4, pp. 376–383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. D. Taylor, P. A. Northcott, A. Korshunov et al., “Molecular subgroups of medulloblastoma: the current consensus,” Acta Neuropathologica, vol. 123, no. 4, pp. 465–472, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. P. A. Northcott, A. Korshunov, H. Witt et al., “Medulloblastoma comprises four distinct molecular variants,” Journal of Clinical Oncology, vol. 29, no. 11, pp. 1408–1414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. Thompson, C. Fuller, T. L. Hogg et al., “Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations,” Journal of Clinical Oncology, vol. 24, no. 12, pp. 1924–1931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. W. Ellison, J. Dalton, M. Kocak et al., “Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups,” Acta Neuropathologica, vol. 121, no. 3, pp. 381–396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kool, A. Korshunov, M. Remke et al., “Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas,” Acta Neuropathologica, vol. 123, no. 4, pp. 473–484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Sadighi, T. Vats, and S. Khatua, “Childhood medulloblastoma: the paradigm shift in molecular stratification and treatment profile,” Journal of Child Neurology, vol. 27, no. 10, pp. 1302–1307, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. Y.-J. Cho, A. Tsherniak, P. Tamayo et al., “Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome,” Journal of Clinical Oncology, vol. 29, no. 11, pp. 1424–1430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. K.-W. Li, K.-M. Lau, and H.-K. Ng, “Signaling pathway and molecular subgroups of medulloblastoma,” International Journal of Clinical and Experimental Pathology, vol. 6, no. 7, pp. 1211–1222, 2013. View at Google Scholar · View at Scopus
  17. A. Petitjean, V. Marcel, A. Pétré et al., “Recent advances in p53 research: an interdisciplinary perspective,” Cancer Gene Therapy, vol. 16, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Petitjean, M. I. W. Achatz, A. L. Borresen-Dale, P. Hainaut, and M. Olivier, “TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes,” Oncogene, vol. 26, no. 15, pp. 2157–2165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Olivier, A. Petitjean, V. Marcel et al., “Recent advances in p53 research: an interdisciplinary perspective,” Cancer Gene Therapy, vol. 16, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Emadian, J. D. McDonald, S. C. Gerken, and D. Fults, “Correlation of chromosome 17p loss with clinical outcome in medulloblastoma,” Clinical Cancer Research, vol. 2, no. 9, pp. 1559–1564, 1996. View at Google Scholar · View at Scopus
  21. E. Steichen-Gersdorf, M. Baumgartner, A. Kreczy, H. Maier, and F.-M. Fink, “Deletion mapping on chromosome 17p in medulloblastoma,” British Journal of Cancer, vol. 76, no. 10, pp. 1284–1287, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Aldosari, B. K. A. Rasheed, R. E. McLendon, H. S. Friedman, D. D. Bigner, and S. H. Bigner, “Characterization of chromosome 17 abnormalities in medulloblastomas,” Acta Neuropathologica, vol. 99, no. 4, pp. 345–351, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. Palmer, N. G. Zaorsky, M. Witek, and B. Lu, “Molecular markers to predict clinical outcome and radiation induced toxicity in lung cancer,” Journal of Thoracic Disease, vol. 6, no. 4, pp. 387–398, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Dey, S. Ditzler, S. E. Knoblaugh et al., “A distinct smoothened mutation causes severe cerebellar developmental defects and medulloblastoma in a novel transgenic mouse model,” Molecular and Cellular Biology, vol. 32, no. 20, pp. 4104–4115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. D. G. R. Evans, L. A. Farndon, L. D. Burnell, H. Rao Gattamaneni, and J. M. Birch, “The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma,” British Journal of Cancer, vol. 64, no. 5, pp. 959–961, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Hahn, C. Wicking, P. G. Zaphiropoulos et al., “Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome,” Cell, vol. 85, no. 6, pp. 841–851, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. R. L. Johnson, A. L. Rothman, J. Xie et al., “Human homolog of patched, a candidate gene for the basal cell nevus syndrome,” Science, vol. 272, no. 5268, pp. 1668–1671, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Reifenberger, M. Wolter, R. G. Weber et al., “Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system,” Cancer Research, vol. 58, no. 9, pp. 1798–1803, 1998. View at Google Scholar · View at Scopus
  30. M. D. Taylor, L. Liu, C. Raffel et al., “Mutations in SUFU predispose to medulloblastoma,” Nature Genetics, vol. 31, no. 3, pp. 306–310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. R. Hamilton, B. Liu, R. E. Parsons et al., “The molecular basis of Turcot's syndrome,” The New England Journal of Medicine, vol. 332, no. 13, pp. 839–847, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Baeza, J. Masuoka, P. Kleihues, and H. Ohgaki, “AXIN1 mutations but not deletions in cerebellar medulloblastomas,” Oncogene, vol. 22, no. 4, pp. 632–636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. C. G. Eberhart, T. Tihan, and P. C. Burger, “Nuclear localization and mutation of β-catenin in medulloblastomas,” Journal of Neuropathology & Experimental Neurology, vol. 59, no. 4, pp. 333–337, 2000. View at Google Scholar · View at Scopus
  34. X. Fan, I. Mikolaenko, I. Elhassan et al., “Notch1 and Notch2 have opposite effects on embryonal brain tumor growth,” Cancer Research, vol. 64, no. 21, pp. 7787–7793, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Xu, S. Yu, R. Jiang et al., “Differential expression of notch family members in astrocytomas and medulloblastomas,” Pathology and Oncology Research, vol. 15, no. 4, pp. 703–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. P. Bartel and C.-Z. Chen, “Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs,” Nature Reviews Genetics, vol. 5, no. 5, pp. 396–400, 2004. View at Google Scholar · View at Scopus
  37. C. Sevignani, G. A. Calin, L. D. Siracusa, and C. M. Croce, “Mammalian microRNAs: a small world for fine-tuning gene expression,” Mammalian Genome, vol. 17, no. 3, pp. 189–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. R. I. Gregory and R. Shiekhattar, “MicroRNA biogenesis and cancer,” Cancer Research, vol. 65, no. 9, pp. 3509–3512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Liu, “MicroRNAs in breast cancer initiation and progression,” Cellular and Molecular Life Sciences, vol. 69, no. 21, pp. 3587–3599, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Fernandez-L, P. A. Northcott, M. D. Taylor, and A. M. Kenney, “Normal and oncogenic roles for microRNAs in the developing brain,” Cell Cycle, vol. 8, no. 24, pp. 4049–4054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. D. O. Vidal, M. M. C. Marques, L. F. Lopes, and R. M. Reis, “The role of microRNAs in medulloblastoma,” Pediatric Hematology and Oncology, vol. 30, no. 5, pp. 367–378, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. D. R. Lucon, C. D. S. Rocha, R. B. Craveiro et al., “Downregulation of 14q32 micrornas in primary human desmoplastic medulloblastoma,” Frontiers in Oncology, vol. 3, no. 254, pp. 1–14, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Batora, D. Sturm, D. T. W. Jones, M. Kool, S. M. Pfister, and P. A. Northcott, “Transitioning from genotypes to epigenotypes: why the time has come for medulloblastoma epigenomics,” Neuroscience, vol. 264, pp. 171–185, 2014. View at Publisher · View at Google Scholar
  44. W.-T. Hung, F.-J. Wu, C.-J. Wang, and C.-W. Luo, “DAN (NBL1) specifically antagonizes BMP2 and BMP4 and modulates the actions of GDF9, BMP2, and BMP4 in the rat ovary1,” Biology of Reproduction, vol. 86, no. 5, article 158, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. M. R. Iantosca, C. E. McPherson, S. Y. Ho, and G. D. Maxwell, “Bone morphogenetic proteins-2 and -4 attenuate apoptosis in a cerebellar primitive neuroectodermal tumor cell line,” Journal of Neuroscience Research, vol. 56, no. 3, pp. 248–258, 1999. View at Publisher · View at Google Scholar
  46. A. R. Hallahan, J. I. Pritchard, R. A. S. Chandraratna et al., “BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect,” Nature Medicine, vol. 9, no. 8, pp. 1033–1038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Arora, D. Kaul, and Y. P. Sharma, “Human coronary heart disease: importance of blood cellular miR-2909 RNomics,” Molecular and Cellular Biochemistry, vol. 392, no. 1-2, pp. 49–63, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Sharma, S. Sharma, M. Arora, and D. Kaul, “Regulation of cellular Cyclin D1 gene by arsenic is mediated through miR-2909,” Gene, vol. 522, no. 1, pp. 60–64, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Kaul, M. Sasikala, and A. Raina, “Regulatory role of miR-2909 in cell-mediated immune response,” Cell Biochemistry and Function, vol. 30, no. 6, pp. 500–504, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Backer, T. Sakurai, M. Grumet, C. Sotelo, and E. Bloch-Gallego, “Nr-CAM and TAG-1 are expressed in distinct populations of developing precerebellar and cerebellar neurons,” Neuroscience, vol. 113, no. 4, pp. 743–748, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. S.-K. Leivonen, K. K. Sahlberg, R. Mäkelä et al., “High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth,” Molecular Oncology, vol. 8, no. 1, pp. 93–104, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Jeansonne, M. Pacifici, A. Lassak et al., “Differential effects of microRNAs on glioblastoma growth and migration,” Genes, vol. 4, no. 1, pp. 46–64, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Díaz-Prado, C. Cicione, E. Muiños-López et al., “Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes,” BMC Musculoskeletal Disorders, vol. 13, article 144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. P. C. Park, M. D. Taylor, T. G. Mainprize et al., “Transcriptional profiling of medulloblastoma in children,” Journal of Neurosurgery, vol. 99, no. 3, pp. 534–541, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. J. Lee, S. Lindsey, B. Graves, S. Yoo, J. M. Olson, and S. A. Langhans, “Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma,” PLoS ONE, vol. 8, no. 8, Article ID e71455, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. J.-Y. Jang, Y.-S. Lee, Y.-K. Jeon, K. Lee, J.-J. Jang, and C.-W. Kim, “ANT2 suppression by shRNA restores miR-636 expression, thereby downregulating Ras and inhibiting tumorigenesis of hepatocellular carcinoma,” Experimental & Molecular Medicine, vol. 45, no. 1, article e3, 2013. View at Publisher · View at Google Scholar · View at Scopus