Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 749734, 11 pages
http://dx.doi.org/10.1155/2015/749734
Review Article

MicroRNAs: Novel Players in the Dialogue between Pancreatic Islets and Immune System in Autoimmune Diabetes

1Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
2Fondazione Umberto Di Mario ONLUS, c/o Toscana Life Science Park, 53100 Siena, Italy

Received 9 April 2015; Revised 29 June 2015; Accepted 1 July 2015

Academic Editor: Joilson O. Martins

Copyright © 2015 Giuliana Ventriglia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Eizirik, M. L. Colli, and F. Ortis, “The role of inflammation in insulitis and β-cell loss in type 1 diabetes,” Nature Reviews Endocrinology, vol. 5, no. 4, pp. 219–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Roggli, A. Britan, S. Gattesco et al., “Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells,” Diabetes, vol. 59, no. 4, pp. 978–986, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Salas-Pérez, E. Codner, E. Valencia, C. Pizarro, E. Carrasco, and F. Pérez-Bravo, “MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes,” Immunobiology, vol. 218, no. 5, pp. 733–737, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Sebastiani, F. A. Grieco, I. Spagnuolo, L. Galleri, D. Cataldo, and F. Dotta, “Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity,” Diabetes/Metabolism Research and Reviews, vol. 27, no. 8, pp. 862–866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. The microRNA database, miRbase release no. 21, 2014, http://www.mirbase.org/.
  6. C. Guay, E. Roggli, V. Nesca, C. Jacovetti, and R. Regazzi, “Diabetes mellitus, a microRNA-related disease?” Translational Research, vol. 157, no. 4, pp. 253–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. B. S. Cobb, T. B. Nesterova, E. Thompson et al., “T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer,” The Journal of Experimental Medicine, vol. 201, no. 9, pp. 1367–1373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. A. Muljo, K. Mark Ansel, C. Kanellopoulou, D. M. Livingston, A. Rao, and K. Rajewsky, “Aberrant T cell differentiation in the absence of Dicer,” The Journal of Experimental Medicine, vol. 202, no. 2, pp. 261–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. M. W. Chong, J. P. Rasmussen, A. Y. Rudensky, and D. R. Littman, “The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease,” The Journal of Experimental Medicine, vol. 205, no. 9, pp. 2005–2017, 2008. View at Publisher · View at Google Scholar
  10. D. F. Steiner, M. F. Thomas, J. K. Hu et al., “MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells,” Immunity, vol. 35, no. 2, pp. 169–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. B. Koralov, S. A. Muljo, G. R. Galler et al., “Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage,” Cell, vol. 132, no. 5, pp. 860–874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Xu, K. Guo, Q. Zeng, J. Huo, and K.-P. Lam, “The RNase III enzyme Dicer is essential for germinal center B-cell formation,” Blood, vol. 119, no. 3, pp. 767–776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Gambineri, T. R. Torgerson, and H. D. Ochs, “Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis,” Current Opinion in Rheumatology, vol. 15, no. 4, pp. 430–435, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Zhou, L. T. Jeker, B. T. Fife et al., “Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 1983–1991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. T. Jeker, X. Zhou, R. Blelloch, and J. A. Bluestone, “DGCR8-mediated production of canonical microRNAs is critical for regulatory T cell function and stability,” PLoS ONE, vol. 8, no. 5, Article ID e66282, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Liston, L.-F. Lu, D. O'Carroll, A. Tarakhovsky, and A. Y. Rudensky, “Dicer-dependent microRNA pathway safeguards regulatory T cell function,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 1993–2004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. S. Cobb, A. Hertweck, J. Smith et al., “A role for Dicer in immune regulation,” Journal of Experimental Medicine, vol. 203, no. 11, pp. 2519–2527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Marson, K. Kretschmer, G. M. Frampton et al., “Foxp3 occupancy and regulation of key target genes during T-cell stimulation,” Nature, vol. 445, no. 7130, pp. 931–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. L.-F. Lu, T.-H. Thai, D. P. Calado et al., “Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein,” Immunity, vol. 30, no. 1, pp. 80–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kohlhaas, O. A. Garden, C. Scudamore, M. Turner, K. Okkenhaug, and E. Vigorito, “Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells1,” Journal of Immunology, vol. 182, no. 5, pp. 2578–2582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L.-F. Lu, M. P. Boldin, A. Chaudhry et al., “Function of miR-146a in controlling Treg cell mediated regulation of Th1 responses,” Cell, vol. 142, no. 6, pp. 914–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. T. Jeker, X. Zhou, K. Gershberg et al., “MicroRNA 10a marks regulatory T cells,” PLoS ONE, vol. 7, no. 5, Article ID e36684, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Takahashi, T. Kanno, S. Nakayamada et al., “TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells,” Nature Immunology, vol. 13, no. 6, pp. 587–595, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. G. J. Berry, L. R. Budgeon, T. K. Cooper, N. D. Christensen, and H. Waldner, “The type 1 diabetes resistance locus B10 Idd9.3 mediates impaired B-cell lymphopoiesis and implicates microRNA-34a in diabetes protection,” European Journal of Immunology, vol. 44, no. 6, pp. 1716–1727, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Hezova, O. Slaby, P. Faltejskova et al., “microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients,” Cellular Immunology, vol. 260, no. 2, pp. 70–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. Yang, L. Ye, B. Wang et al., “Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients,” Journal of Diabetes, vol. 7, no. 2, pp. 158–165, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Du, C. Liu, J. Kang et al., “MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis,” Nature Immunology, vol. 10, no. 12, pp. 1252–1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Diana, L. Gahzarian, Y. Simoni, and A. Lehuen, “Innate immunity in type 1 diabetes,” Discovery Medicine, vol. 11, no. 61, pp. 513–520, 2011. View at Google Scholar · View at Scopus
  29. J. Diana, Y. Simoni, L. Furio et al., “Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes,” Nature Medicine, vol. 19, no. 1, pp. 65–73, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. F. A. Grieco, F. Vendrame, I. Spagnuolo, and F. Dotta, “Innate immunity and the pathogenesis of type 1 diabetes,” Seminars in Immunopathology, vol. 33, no. 1, pp. 57–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Poligone, D. J. Weaver Jr., P. Sen, A. S. Baldwin, and R. Tisch, “Elevated NF-κB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function,” The Journal of Immunology, vol. 168, no. 1, pp. 188–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Steptoe, J. M. Ritchie, and L. C. Harrison, “Increased generation of dendritic cells from myeloid progenitors in autoimmune-prone nonobese diabetic mice,” The Journal of Immunology, vol. 168, no. 10, pp. 5032–5041, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Valle, G. M. Giamporcaro, M. Scavini et al., “Reduction of circulating neutrophils precedes and accompanies type 1 diabetes,” Diabetes, vol. 62, no. 6, pp. 2072–2077, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. J. G. M. Markle, S. Mortin-Toth, A. S. L. Wong, L. Geng, A. Hayday, and J. S. Danska, “γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model,” Journal of Immunology, vol. 190, no. 11, pp. 5392–5401, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Lien and D. Zipris, “The role of toll-like receptor pathways in the mechanism of type 1 diabetes,” Current Molecular Medicine, vol. 9, no. 1, pp. 52–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Devaraj, M. R. Dasu, J. Rockwood, W. Winter, S. C. Griffen, and I. Jialal, “Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 2, pp. 578–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. F. Alemdehy, N. G. J. A. van Boxtel, H. W. J. de Looper et al., “Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice,” Blood, vol. 119, no. 20, pp. 4723–4730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Kuipers, F. M. Schnorfeil, H.-J. Fehling, H. Bartels, and T. Brocker, “Dicer-dependent microRNAs control maturation, function, and maintenance of Langerhans cells in vivo,” Journal of Immunology, vol. 185, no. 1, pp. 400–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. X. He, Z. Jing, and G. Cheng, “MicroRNAs: new regulators of toll-like receptor signalling pathways,” BioMed Research International, vol. 2014, Article ID 945169, 14 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Y. Donath, J. Størling, L. A. Berchtold, N. Billestrup, and T. Mandrup-Poulsen, “Cytokines and β-cell biology: from concept to clinical translation,” Endocrine Reviews, vol. 29, no. 3, pp. 334–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Ma, L. E. Becker Buscaglia, J. R. Barker, and Y. Li, “MicroRNAs in NF-κB signaling,” Journal of Molecular Cell Biology, vol. 3, no. 3, pp. 159–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. Ruan, T. Wang, V. Kameswaran et al., “The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12030–12035, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Roggli, S. Gattesco, D. Caille et al., “Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice,” Diabetes, vol. 61, no. 7, pp. 1742–1751, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Bravo-Egana, S. Rosero, D. Klein et al., “Inflammation-mediated regulation of microRNA expression in transplanted pancreatic islets,” Journal of Transplantation, vol. 2012, Article ID 723614, 15 pages, 2012. View at Publisher · View at Google Scholar
  45. F. Ortis, N. Naamane, D. Flamez et al., “Cytokines interleukin-1β and tumor necrosis factor-α regulate different transcriptional and alternative splicing networks in primary β-cells,” Diabetes, vol. 59, no. 2, pp. 358–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Q.-S. Mi, H.-Z. He, Z. Dong, C. Isales, and L. Zhou, “MicroRNA deficiency in pancreatic islet cells exacerbates streptozotocin-induced murine autoimmune diabetes,” Cell Cycle, vol. 9, no. 15, pp. 3127–3129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Nielsen, M. Kruhøffer, T. Ørntoft et al., “Gene expression profiles during beta cell maturation and after IL-1β exposure reveal important roles of Pdx-1 and Nkx6.1 for IL-1β sensitivity,” Diabetologia, vol. 47, no. 12, pp. 2185–2199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C. H. Bang-Berthelsen, L. Pedersen, T. Fløyel, P. H. Hagedorn, T. Gylvin, and F. Pociot, “Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes,” BMC Genomics, vol. 12, article 97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Talchai, S. Xuan, H. V. Lin, L. Sussel, and D. Accili, “Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure,” Cell, vol. 150, no. 6, pp. 1223–1234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Kaspi, R. Pasvolsky, and E. Hornstein, “Could microRNAs contribute to the maintenance of β cell identity?” Trends in Endocrinology and Metabolism, vol. 25, no. 6, pp. 285–292, 2014. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Weber, D. H. Baxter, S. Zhang et al., “The microRNA spectrum in 12 body fluids,” Clinical Chemistry, vol. 56, no. 11, pp. 1733–1741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya, “Secretory mechanisms and intercellular transfer of microRNAs in living cells,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 17442–17452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Turchinovich, L. Weiz, A. Langheinz, and B. Burwinkel, “Characterization of extracellular circulating microRNA,” Nucleic Acids Research, vol. 39, no. 16, pp. 7223–7233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. D. J. Gibbings, C. Ciaudo, M. Erhardt, and O. Voinnet, “Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity,” Nature Cell Biology, vol. 11, no. 9, pp. 1143–1149, 2009. View at Publisher · View at Google Scholar
  55. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek, and A. T. Remaley, “MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins,” Nature Cell Biology, vol. 13, no. 4, pp. 423–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J. D. Arroyo, J. R. Chevillet, E. M. Kroh et al., “Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 5003–5008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Turchinovich, L. Weiz, and B. Burwinkel, “Extracellular miRNAs: the mystery of their origin and function,” Trends in Biochemical Sciences, vol. 37, no. 11, pp. 460–465, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Ma, T. Jiang, and X. Kang, “Circulating microRNAs in cancer: origin, function and application,” Journal of Experimental & Clinical Cancer Research, vol. 31, no. 1, article 38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Kosaka, H. Iguchi, and T. Ochiya, “Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis,” Cancer Science, vol. 101, no. 10, pp. 2087–2092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Théry, L. Zitvogel, and S. Amigorena, “Exosomes: composition, biogenesis and function,” Nature Reviews Immunology, vol. 2, no. 8, pp. 569–579, 2002. View at Google Scholar · View at Scopus
  62. G. Hu, K. M. Drescher, and X. M. Chen, “Exosomal miRNAs: biological properties and therapeutic potential,” Frontiers in Genetics, vol. 20, no. 3, article 56, 2012. View at Publisher · View at Google Scholar
  63. G. Lachenal, K. Pernet-Gallay, M. Chivet et al., “Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity,” Molecular and Cellular Neuroscience, vol. 46, no. 2, pp. 409–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Skog, T. Würdinger, S. van Rijn et al., “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers,” Nature Cell Biology, vol. 10, no. 12, pp. 1470–1476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Harding, J. Heuser, and P. Stahl, “Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes.,” Journal of Cell Biology, vol. 97, no. 2, pp. 329–339, 1983. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Ramachandran and V. Palanisamy, “Horizontal transfer of RNAs: exosomes as mediators of intercellular communication,” Wiley Interdisciplinary Reviews: RNA, vol. 3, no. 2, pp. 286–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. B. György, T. G. Szabó, M. Pásztói et al., “Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles,” Cellular and Molecular Life Sciences, vol. 68, no. 16, pp. 2667–2688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. S. K. Ajit, “Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules,” Sensors, vol. 12, no. 3, pp. 3359–3369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. J. C. Brase, D. Wuttig, R. Kuner, and H. Sültmann, “Serum microRNAs as non-invasive biomarkers for cancer,” Molecular Cancer, vol. 26, no. 9, article 306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Guay and R. Regazzi, “Circulating microRNAs as novel biomarkers for diabetes mellitus,” Nature Reviews Endocrinology, vol. 9, no. 9, pp. 513–521, 2013. View at Publisher · View at Google Scholar · View at Scopus
  71. R. A. Boon and K. C. Vickers, “Intercellular transport of microRNAs,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 2, pp. 186–192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Wang, S. Zhang, J. Weber, D. Baxter, and D. J. Galas, “Export of microRNAs and microRNA-protective protein by mammalian cells,” Nucleic Acids Research, vol. 38, no. 20, pp. 7248–7259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Mittelbrunn, C. Gutiérrez-Vázquez, C. Villarroya-Beltri et al., “Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells,” Nature Communications, vol. 2, no. 1, article 282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Zhang, D. Liu, X. Chen et al., “Secreted monocytic miR-150 enhances targeted endothelial cell migration,” Molecular Cell, vol. 39, no. 1, pp. 133–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. J. C. Brase, M. Johannes, T. Schlomm et al., “Circulating miRNAs are correlated with tumor progression in prostate cancer,” International Journal of Cancer, vol. 128, no. 3, pp. 608–616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. E. K. O. Ng, W. W. S. Chong, H. Jin et al., “Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening,” Gut, vol. 58, no. 10, pp. 1375–1381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Guay, V. Menoud, S. Rome, and R. Regazzi, “Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells,” Cell Communication and Signaling, vol. 13, no. 1, article 17, 2015. View at Publisher · View at Google Scholar
  78. F. Figliolini, V. Cantaluppi, M. de Lena et al., “Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets,” PLoS ONE, vol. 9, no. 7, Article ID e102521, 2014. View at Publisher · View at Google Scholar · View at Scopus
  79. G. Sebastiani, I. Spagnuolo, A. Patti et al., “MicroRNA expression fingerprint in serum of type 1 diabetic patients,” Diabetologia, vol. 55, p. S48, 2012. View at Google Scholar
  80. L. B. Nielsen, C. Wang, K. Sørensen et al., “Circulating levels of MicroRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression,” Experimental Diabetes Research, vol. 2012, Article ID 896362, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. R. M. O'Connell, D. S. Rao, A. A. Chaudhuri, and D. Baltimore, “Physiological and pathological roles for microRNAs in the immune system,” Nature Reviews Immunology, vol. 10, no. 2, pp. 111–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Gutiérrez-Vázquez, C. Villarroya-Beltri, M. Mittelbrunn, and F. Sánchez-Madrid, “Transfer of extracellular vesicles during immune cell-cell interactions,” Immunological Reviews, vol. 251, no. 1, pp. 125–142, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Théry, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews Immunology, vol. 9, no. 8, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Bobrie, M. Colombo, G. Raposo, and C. Théry, “Exosome secretion: molecular mechanisms and roles in immune responses,” Traffic, vol. 12, no. 12, pp. 1659–1668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Raposo, H. W. Nijman, W. Stoorvogel et al., “B lymphocytes secrete antigen-presenting vesicles,” The Journal of Experimental Medicine, vol. 183, no. 3, pp. 1161–1172, 1996. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Zitvogel, A. Regnault, A. Lozier et al., “Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes,” Nature Medicine, vol. 4, no. 5, pp. 594–600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Salama, N. Fichou, M. Allard et al., “MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity,” PLoS ONE, vol. 9, no. 9, Article ID e106153, 2014. View at Publisher · View at Google Scholar