Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 794968, 9 pages
http://dx.doi.org/10.1155/2015/794968
Review Article

Beyond the Immune Suppression: The Immunotherapy in Prostate Cancer

1Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
2Department of Urology, Sapienza University of Rome, 00161 Rome, Italy
3Department of “Medicina dei Sistemi” Rheumatology, Allergology and Clinical Immunology, University of Rome “Tor Vergata”, 00133 Rome, Italy

Received 28 November 2014; Revised 6 February 2015; Accepted 6 February 2015

Academic Editor: Anshu Agrawal

Copyright © 2015 Ida Silvestri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, I. Soerjomataram, R. Dikshit et al., “Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012,” International Journal of Cancer, vol. 136, no. 5, pp. E359–E386, 2015. View at Publisher · View at Google Scholar
  2. A. M. De Marzo, E. A. Platz, S. Sutcliffe et al., “Inflammation in prostate carcinogenesis,” Nature Reviews Cancer, vol. 7, no. 4, pp. 256–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. E. de Visser, A. Eichten, and L. M. Coussens, “Paradoxical roles of the immune system during cancer development,” Nature Reviews Cancer, vol. 6, no. 1, pp. 24–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. I. Diakos, K. A. Charles, D. C. McMillan, and S. J. Clarke, “Cancer-related inflammation and treatment effectiveness,” The Lancet Oncology, vol. 15, no. 11, pp. e493–e503, 2014. View at Publisher · View at Google Scholar
  7. T. C. Bruno, J. D. French, K. R. Jordan et al., “Influence of human immune cells on cancer: studies at the University of Colorado,” Immunologic Research, vol. 55, no. 1–3, pp. 22–33, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. D. G. Bostwick, G. De la Roza, P. Dundore, F. A. Corica, and K. A. Iczkowski, “Intraepithelial and stromal lymphocytes in the normal human prostate,” The Prostate, vol. 55, no. 3, pp. 187–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Nakayamada, H. Takahashi, Y. Kanno, and J. J. O'Shea, “Helper T cell diversity and plasticity,” Current Opinion in Immunology, vol. 24, no. 3, pp. 297–302, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M.-R. A. Hussein, M. AL-Assiri, and A. O. Musalam, “Phenotypic characterization of the infiltrating immune cells in normal prostate, benign nodular prostatic hyperplasia and prostatic adenocarcinoma,” Experimental and Molecular Pathology, vol. 86, no. 2, pp. 108–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Sfanos and A. M. de Marzo, “Prostate cancer and inflammation: the evidence,” Histopathology, vol. 60, no. 1, pp. 199–215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. P. A. McArdle, K. Canna, D. C. McMillan, A.-H. McNicol, R. Campbell, and M. A. Underwood, “The relationship between T-lymphocyte subset infiltration and survival in patients with prostate cancer,” British Journal of Cancer, vol. 91, no. 3, pp. 541–543, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Vesalainen, P. Lipponen, M. Talja, and K. Syrjanen, “Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma,” European Journal of Cancer Part A: General Topics, vol. 30, no. 12, pp. 1797–1803, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Irani, J. M. Goujon, E. Ragni et al., “High-grade inflammation in prostate cancer as a prognostic factor for biochemical recurrence after radical prostatectomy. Pathologist multi center study group,” Urology, vol. 54, no. 3, pp. 467–472, 1999. View at Google Scholar
  15. S. Ostrand-Rosenberg, P. Sinha, D. W. Beury, and V. K. Clements, “Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression,” Seminars in Cancer Biology, vol. 22, no. 4, pp. 275–281, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, “Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases,” Journal of Immunology, vol. 155, no. 3, pp. 1151–1164, 1995. View at Google Scholar · View at Scopus
  17. S. Sakaguchi, N. Sakaguchi, J. Shimizu et al., “Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance,” Immunological Reviews, vol. 182, no. 1, pp. 18–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Fehérvari and S. Sakaguchi, “Development and function of CD25+CD4+ regulatory T cells,” Current Opinion in Immunology, vol. 16, no. 2, pp. 203–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Z. Josefowicz, L.-F. Lu, and A. Y. Rudensky, “Regulatory T cells: mechanisms of differentiation and function,” Annual Review of Immunology, vol. 30, pp. 531–564, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Lin, M. Chen, Y. Liu et al., “Advances in distinguishing natural from induced Foxp3+ regulatory T cells,” International Journal of Clinical and Experimental Pathology, vol. 6, no. 2, pp. 116–123, 2013. View at Google Scholar · View at Scopus
  21. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Beyer and J. L. Schultze, “Regulatory T cells in cancer,” Blood, vol. 108, no. 3, pp. 804–811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. O. Adeegbe and H. Nishikawa, “Natural and induced T regulatory cells in cancer,” Frontiers in Immunology, vol. 4, article 190, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Nishikawa and S. Sakaguchi, “Regulatory T cells in tumor immunity,” International Journal of Cancer, vol. 127, no. 4, pp. 759–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. M. Wilke, K. Wu, E. Zhao, G. Wang, and W. Zou, “Prognostic significance of regulatory T cells in tumor,” International Journal of Cancer, vol. 127, no. 4, pp. 748–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Tang, M. L. Moore, J. M. Grayson, and P. Dubey, “Increased CD8+ T-cell function following castration and immunization is countered by parallel expansion of regulatory T cells,” Cancer Research, vol. 72, no. 8, pp. 1975–1985, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Miller, K. Lundberg, V. Özenci et al., “CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients,” The Journal of Immunology, vol. 177, no. 10, pp. 7398–7405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Flammiger, L. Weisbach, H. Huland et al., “High tissue density of FOXP3+ T cells is associated with clinical outcome in prostate cancer,” European Journal of Cancer, vol. 49, no. 6, pp. 1273–1279, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Kärjä, S. Aaltomaa, P. Lipponen, T. Isotalo, M. Talja, and R. Mokka, “Tumour-infiltrating lymphocytes: a prognostic factor of psa-free survival in patients with local prostate carcinoma treated by radical prostatectomy,” Anticancer Research, vol. 25, no. 6, pp. 4435–4438, 2005. View at Google Scholar · View at Scopus
  30. N.-Y. Huen, A. L.-Y. Pang, J. A. Tucker et al., “Up-regulation of proliferative and migratory genes in regulatory T cells from patients with metastatic castration-resistant prostate cancer,” International Journal of Cancer, vol. 133, no. 2, pp. 373–382, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Facciabene, G. T. Motz, and G. Coukos, “T-Regulatory cells: key players in tumor immune escape and angiogenesis,” Cancer Research, vol. 72, no. 9, pp. 2162–2171, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. I. Gabrilovich, S. Ostrand-Rosenberg, and V. Bronte, “Coordinated regulation of myeloid cells by tumours,” Nature Reviews Immunology, vol. 12, no. 4, pp. 253–268, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J.-I. Youn and D. I. Gabrilovich, “The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity,” European Journal of Immunology, vol. 40, no. 11, pp. 2969–2975, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Movahedi, M. Guilliams, J. van den Bossche et al., “Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell suppressive activity,” Blood, vol. 111, no. 8, pp. 4233–4244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Jiang, W. Guo, and X. Liang, “Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients,” Human Immunology, vol. 75, no. 11, pp. 1128–1137, 2014. View at Publisher · View at Google Scholar
  37. P. C. Rodriguez, D. G. Quiceno, J. Zabaleta et al., “Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses,” Cancer Research, vol. 64, no. 16, pp. 5839–5849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. P. C. Rodríguez and A. C. Ochoa, “Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives,” Immunological Reviews, vol. 222, no. 1, pp. 180–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Sauer, M. Wartenberg, and J. Hescheler, “Reactive oxygen species as intracellular messengers during cell growth and differentiation,” Cellular Physiology and Biochemistry, vol. 11, no. 4, pp. 173–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. E. M. Hanson, V. K. Clements, P. Sinha, D. Ilkovitch, and S. Ostrand-Rosenberg, “Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells,” Journal of Immunology, vol. 183, no. 2, pp. 937–944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. P.-Y. Pan, G. Ma, K. J. Weber et al., “Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer,” Cancer Research, vol. 70, no. 1, pp. 99–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. N. R. Monu and A. B. Frey, “Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship,” Immunological Investigations, vol. 41, no. 6-7, pp. 595–613, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Yang, L. M. DeBusk, K. Fukuda et al., “Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis,” Cancer Cell, vol. 6, no. 4, pp. 409–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Idorn, T. Køllgaard, P. Kongsted, L. Sengeløv, and P. thor Straten, “Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer,” Cancer Immunology, Immunotherapy, vol. 63, no. 11, pp. 1177–1187, 2014. View at Publisher · View at Google Scholar
  45. S. Vuk-Pavlović, P. A. Bulur, Y. Lin et al., “Immunosuppressive CD14+HLA-DRlow/− monocytes in prostate cancer,” The Prostate, vol. 70, no. 4, pp. 443–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Mantovani, B. Bottazzi, F. Colotta, S. Sozzani, and L. Ruco, “The origin and function of tumor-associated macrophages,” Immunology Today, vol. 13, no. 7, pp. 265–270, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Locati, A. Mantovani, and A. Sica, “Macrophage activation and polarization as an adaptive component of innate immunity,” Advances in Immunology, vol. 120, pp. 163–184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Sica and V. Bronte, “Altered macrophage differentiation and immune dysfunction in tumor development,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1155–1166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Chanmee, P. Ontong, K. Konno, and N. Itano, “Tumor-associated macrophages as major players in the tumor microenvironment,” Cancers, vol. 6, no. 3, pp. 1670–1690, 2014. View at Publisher · View at Google Scholar
  52. M. Lanciotti, L. Masieri, M. R. Raspollini et al., “The role of M1 and M2 macrophages in prostate cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy,” BioMed Research International, vol. 2014, Article ID 486798, 6 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. I. F. Lissbrant, P. Stattin, P. Wikstrom, J. E. Damber, L. Egevad, and A. Bergh, “Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival,” International Journal of Oncology, vol. 17, no. 3, pp. 445–451, 2000. View at Google Scholar · View at Scopus
  54. N. Nonomura, H. Takayama, M. Nakayama et al., “Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer,” BJU International, vol. 107, no. 12, pp. 1918–1922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Shimura, G. Yang, S. Ebara, T. M. Wheeler, A. Frolov, and T. C. Thompson, “Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression,” Cancer Research, vol. 60, no. 20, pp. 5857–5861, 2000. View at Google Scholar · View at Scopus
  56. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. R. M. Steinman and J. Banchereau, “Taking dendritic cells into medicine,” Nature, vol. 449, no. 7161, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Tel, S. Anguille, C. E. J. Waterborg, E. L. Smits, C. G. Figdor, and I. J. M. de Vries, “Tumoricidal activity of human dendritic cells,” Trends in Immunology, vol. 35, no. 1, pp. 38–46, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Pinzon-Charry, T. Maxwell, and J. A. López, “Dendritic cell dysfunction in cancer: a mechanism for immunosuppression,” Immunology and Cell Biology, vol. 83, no. 5, pp. 451–461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Almand, J. R. Resser, B. Lindman et al., “Clinical significance of defective dendritic cell differentiation in cancer,” Clinical Cancer Research, vol. 6, no. 5, pp. 1755–1766, 2000. View at Google Scholar · View at Scopus
  61. A. Pinzon-Charry, C. S. K. Ho, R. Laherty et al., “A population of HLA-DR+ immature cells accumulates in the blood dendritic cell compartment of patients with different types of cancer,” Neoplasia, vol. 7, no. 12, pp. 1112–1122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Liu, T. Sæter, L. Vlatkovic et al., “Dendritic and lymphocytic cell infiltration in prostate carcinoma,” Histology and Histopathology, vol. 28, no. 12, pp. 1621–1628, 2013. View at Google Scholar · View at Scopus
  63. A. Sciarra, M. Lichtner, A. A. Gomez et al., “Characterization of circulating blood dendritic cell subsets DC123+ (lymphoid) and DC11C+ (myeloid) in prostate adenocarcinoma patients,” The Prostate, vol. 67, no. 1, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Aalamian-Matheis, G. S. Chatta, M. R. Shurin, E. Huland, H. Huland, and G. V. Shurin, “Inhibition of dendritic cell generation and function by serum from prostate cancer patients: correlation with serum-free PSA,” Advances in Experimental Medicine and Biology, vol. 601, pp. 173–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Kantoff and C. S. Higano, “Integration of immunotherapy into the management of advanced prostate cancer,” Urologic Oncology: Seminars and Original Investigations, vol. 30, supplement 5, pp. S41–S47, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. M. D. Vesely, M. H. Kershaw, R. D. Schreiber, and M. J. Smyth, “Natural innate and adaptive immunity to cancer,” Annual Review of Immunology, vol. 29, pp. 235–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. P. W. Kantoff, C. S. Higano, N. D. Shore et al., “Sipuleucel-T immunotherapy for castration-resistant prostate cancer,” The New England Journal of Medicine, vol. 363, no. 5, pp. 411–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. D. Wesley, J. Whitmore, J. Trager, and N. Sheikh, “An overview of sipuleucel-T: autologous cellular immunotherapy for prostate cancer,” Human Vaccines & Immunotherapeutics, vol. 8, no. 4, pp. 520–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Small, P. Fratesi, D. Reese et al., “Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells,” Journal of Clinical Oncology, vol. 18, no. 23, pp. 3894–3903, 2000. View at Google Scholar · View at Scopus
  70. P. A. Burch, J. K. Breen, J. C. Buckner et al., “Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer,” Clinical Cancer Research, vol. 6, no. 6, pp. 2175–2182, 2000. View at Google Scholar · View at Scopus
  71. K. Wing, Y. Onishi, P. Prieto-Martin et al., “CTLA-4 control over Foxp3+ regulatory T cell function,” Science, vol. 322, no. 5899, pp. 271–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. S. F. Slovin, C. S. Higano, O. Hamid et al., “Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study,” Annals of Oncology, vol. 24, no. 7, Article ID mdt107, pp. 1813–1821, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. E. D. Kwon, C. G. Drake, H. I. Scher et al., “Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial,” The Lancet Oncology, vol. 15, no. 7, pp. 700–712, 2014. View at Publisher · View at Google Scholar · View at Scopus
  74. C. J. Paller and E. S. Antonarakis, “Sipuleucel-T for the treatment of metastatic prostate cancer: promise and challenges,” Human Vaccines & Immunotherapeutics, vol. 8, no. 4, pp. 509–519, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. B. W.-C. Tse, L. Jovanovic, C. C. Nelson, P. de Souza, C. A. Power, and P. J. Russell, “From bench to bedside: immunotherapy for prostate cancer,” BioMed Research International, vol. 2014, Article ID 981434, 11 pages, 2014. View at Publisher · View at Google Scholar
  76. E. J. Small, P. F. Schellhammer, C. S. Higano et al., “Placebo-controlled phase III trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer,” Journal of Clinical Oncology, vol. 24, no. 19, pp. 3089–3094, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. C. S. Higano, P. F. Schellhammer, E. J. Small et al., “Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer,” Cancer, vol. 115, no. 16, pp. 3670–3679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. P. F. Schellhammer, G. Chodak, J. B. Whitmore, R. Sims, M. W. Frohlich, and P. W. Kantoff, “Lower baseline prostate-specific antigen is associated with a greater overall survival benefit from sipuleucel-T in the immunotherapy for prostate adenocarcinoma treatment (IMPACT) trial,” Urology, vol. 81, no. 6, pp. 1297–1302, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Pili, M. Häggman, W. M. Stadler et al., “Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer,” Journal of Clinical Oncology, vol. 29, no. 30, pp. 4022–4028, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. A. J. Armstrong, M. Häggman, W. M. Stadler et al., “Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer,” Clinical Cancer Research, vol. 19, no. 24, pp. 6891–6901, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. S. L. Dalrymple, R. E. Becker, and J. T. Isaacs, “The quinoline-3-carboxamide anti-angiogenic agent, tasquinimod, enhances the anti-prostate cancer efficacy of androgen ablation and taxotere without effecting serum PSA directly in human xenografts,” The Prostate, vol. 67, no. 7, pp. 790–797, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. L. Dalrymple, R. E. Becker, H. Zhou, T. L. Deweese, and J. T. Isaacs, “Tasquinimod prevents the angiogenic rebound induced by fractionated radiation resulting in an enhanced therapeutic response of prostate cancer xenografts,” The Prostate, vol. 72, no. 6, pp. 638–648, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. J. T. Isaacs, R. Pili, D. Z. Qian et al., “Identification of ABR-215050 as lead second generation quinoline-3- carboxamide anti-angiogenic agent for the treatment of prostate cancer,” Prostate, vol. 66, no. 16, pp. 1768–1778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. J. T. Isaacs, L. Antony, S. L. Dalrymple et al., “Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment,” Cancer Research, vol. 73, no. 4, pp. 1386–1399, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Shen, A. Sundstedt, M. Ciesielski et al., “Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models,” Cancer Immunology Research, vol. 3, no. 2, pp. 136–148, 2015. View at Publisher · View at Google Scholar
  86. C. G. Drake, “Prostate cancer as a model for tumour immunotherapy,” Nature Reviews Immunology, vol. 10, no. 8, pp. 580–593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. P. W. Kantoff, T. J. Schuetz, B. A. Blumenstein et al., “Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1099–1105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. D. T. Le, D. M. Pardoll, and E. M. Jaffee, “Cellular vaccine approaches,” Cancer Journal, vol. 16, no. 4, pp. 304–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. E. J. Small, N. Sacks, J. Nemunaitis et al., “Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer,” Clinical Cancer Research, vol. 13, no. 13, pp. 3883–3891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. C. S. Higano, J. M. Corman, D. C. Smith et al., “Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer,” Cancer, vol. 113, no. 5, pp. 975–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. C. G. Drake, “Immunotherapy for prostate cancer: walk, don't run,” Journal of Clinical Oncology, vol. 27, no. 25, pp. 4035–4037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. A. J. M. van den Eertwegh, J. Versluis, H. P. van den Berg et al., “Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial,” The Lancet Oncology, vol. 13, no. 5, pp. 509–517, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. R. A. Madan, M. Mohebtash, P. M. Arlen et al., “Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial,” The Lancet Oncology, vol. 13, no. 5, pp. 501–508, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. C. G. Drake, P. Sharma, and W. Gerritsen, “Metastatic castration-resistant prostate cancer: new therapies, novel combination strategies and implications for immunotherapy,” Oncogene, vol. 33, no. 43, pp. 5053–5064, 2014. View at Publisher · View at Google Scholar · View at Scopus