Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 857969, 8 pages
http://dx.doi.org/10.1155/2015/857969
Research Article

Anodisation Increases Integration of Unloaded Titanium Implants in Sheep Mandible

1Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
2Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
3Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea

Received 10 May 2015; Accepted 27 May 2015

Academic Editor: Yongsung Hwang

Copyright © 2015 Warwick J. Duncan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration,” Dental Materials, vol. 23, no. 7, pp. 844–854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Jackson and W. Ahmed, Surface Engineered Surgical Tools and Medical Devices, Springer, Berlin, Germany, 2007. View at Publisher · View at Google Scholar
  3. P. F. Barbosa and S. T. Button, “Microstructure and mechanical behaviour of the isothermally forged Ti-6Al-7Nb alloy,” Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design and Applications, vol. 214, no. 1, pp. 23–31, 2000. View at Google Scholar · View at Scopus
  4. Y. T. Sul, C. B. Johansson, Y. Jeong, K. Röser, A. Wennerberg, and T. Albrektsson, “Oxidized implants and their influence on the bone response,” Journal of Materials Science: Materials in Medicine, vol. 12, no. 10–12, pp. 1025–1031, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. Y.-T. Sul, C. B. Johansson, and T. Albrektsson, “Oxidized titanium screws coated with calcium ions and their performance in rabbit bone,” International Journal of Oral & Maxillofacial Implants, vol. 17, no. 5, pp. 625–634, 2002. View at Google Scholar · View at Scopus
  6. Y.-T. Sul, C. B. Johansson, Y. Kang, D.-G. Jeon, and T. Albrektsson, “Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation,” Clinical Implant Dentistry & Related Research, vol. 4, no. 2, pp. 78–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Y.-T. Sul, C. B. Johansson, K. Röser, and T. Albrektsson, “Qualitative and quantitative observations of bone tissue reactions to anodised implants,” Biomaterials, vol. 23, no. 8, pp. 1809–1817, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Y.-T. Sul, “The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant,” Biomaterials, vol. 24, no. 22, pp. 3893–3907, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Jungner, P. Lundqvist, and S. Lundgren, “Oxidized titanium implants (Nobel Biocare TiUnite) compared with turned titanium implants (Nobel Biocare mark III) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol,” Clinical Oral Implants Research, vol. 16, no. 3, pp. 308–312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Indira, S. Ningshen, U. K. Mudali, and N. Rajendran, “Effect of anodization parameters on the structural morphology of titanium in fluoride containing electrolytes,” Materials Characterization, vol. 71, pp. 58–65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. B. C. V. Gurgel, P. F. Goncxalves, S. P. Pimentel et al., “An oxidized implant surface may improve bone-to-implant contact in pristine bone and bone defects treated with guided bone regeneration: an experimental study in dogs,” Journal of Periodontology, vol. 79, no. 7, pp. 1225–1231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Salata, P. M. Burgos, L. Rasmusson et al., “Osseointegration of oxidized and turned implants in circumferential bone defects with and without adjunctive therapies: an experimental study on BMP-2 and autogenous bone graft in the dog mandible,” International Journal of Oral and Maxillofacial Surgery, vol. 36, no. 1, pp. 62–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-T. Sul, J. Jönsson, G.-S. Yoon, and C. Johansson, “Resonance frequency measurements in vivo and related surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite, Osseotite, SLA and TiOblast implants,” Clinical Oral Implants Research, vol. 20, no. 10, pp. 1146–1155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. W. J. Duncan, Sheep mandibular animal models for dental implantology research [Ph.D. thesis], University of Otago, Dunedin, New Zealand, 2005.
  15. I. S. Park, M. H. Lee, T. S. Bae, and K. W. Seol, “Effects of anodic oxidation parameters on a modified titanium surface,” Journal of Biomedical Materials Research—Part B Applied Biomaterials, vol. 84, no. 2, pp. 422–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Gottlander and T. Albrektsson, “Histomorphometric studies of hydroxylapatite-coated and uncoated CP titanium threaded implants in bone,” The International Journal of Oral & Maxillofacial Implants, vol. 6, no. 4, pp. 399–404, 1991. View at Google Scholar · View at Scopus
  17. C. B. Johansson and T. Albrektsson, “A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone,” Clinical Oral Implants Research, vol. 2, no. 1, pp. 24–29, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. L. V. Bogaerde, G. Pedretti, P. Dellacasa, M. Mozzati, B. Rangert, and I. Wendelhag, “Early function of splinted implants in maxillas and posterior mandibles, using Branemark System Tiunite implants: an 18-month prospective clinical multicenter study,” Clinical Implant Dentistry and Related Research, vol. 6, no. 3, pp. 121–129, 2004. View at Google Scholar · View at Scopus
  19. B. Friberg and T. Jemt, “Rehabilitation of edentulous mandibles by means of five TiUnite implants after one-stage surgery: a 1-year retrospective study of 90 patients,” Clinical Implant Dentistry and Related Research, vol. 10, no. 1, pp. 47–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-T. Sul, E. Byon, and A. Wennerberg, “Surface characteristics of electrochemically oxidized implants and acid-etched implants: surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness,” International Journal of Oral and Maxillofacial Implants, vol. 23, no. 4, pp. 631–640, 2008. View at Google Scholar · View at Scopus
  21. D. M. Dohan Ehrenfest, P. G. Coelho, B.-S. Kang, Y.-T. Sul, and T. Albrektsson, “Classification of osseointegrated implant surfaces: materials, chemistry and topography,” Trends in Biotechnology, vol. 28, no. 4, pp. 198–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Rocci, M. Martignoni, P. M. Burgos, J. Gottlow, and L. Sennerby, “Histology of retrieved immediately and early loaded oxidized implants: light microscopic observations after 5 to 9 months of loading in the posterior mandible,” Clinical Implant Dentistry and Related Research, vol. 5, supplement 1, pp. 88–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Al-Nawas, W. Wagner, and K. A. Grötz, “Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants,” International Journal of Oral & Maxillofacial Implants, vol. 21, no. 5, pp. 726–732, 2006. View at Google Scholar · View at Scopus
  24. C.-J. Ivanoff, G. Widmark, C. Johansson, and A. Wennerberg, “Histologic evaluation of bone response to oxidized and turned titanium micro-implants in human jawbone,” International Journal of Oral & Maxillofacial Implants, vol. 18, no. 3, pp. 341–348, 2003. View at Google Scholar · View at Scopus
  25. P. Schüpbach, R. Glauser, A. Rocci et al., “The human bone-oxidized titanium implant interface: a light microscopic, scanning electron microscopic, back-scatter scanning electron microscopic, and energy-dispersive X-ray study of clinically retrieved dental implants,” Clinical Implant Dentistry & Related Research, vol. 7, supplement 1, pp. S36–S43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-H. Kim, J.-Y. Koak, I.-T. Chang, A. Wennerberg, and S.-J. Heo, “A histomorphometric analysis of the effects of various surface treatment methods on osseointegration,” International Journal of Oral & Maxillofacial Implants, vol. 18, no. 3, pp. 349–356, 2003. View at Google Scholar · View at Scopus
  27. B. Al-Nawas, K. A. Groetz, H. Goetz, H. Duschner, and W. Wagner, “Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model,” Clinical Oral Implants Research, vol. 19, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. V. Xiropaidis, M. Qahash, W. H. Lim et al., “Bone–implant contact at calcium phosphate-coated and porous titanium oxide (TiUnite)-modified oral implants,” Clinical Oral Implants Research, vol. 16, no. 5, pp. 532–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. H. Chung, S. J. Heo, J. Y. Koak et al., “Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study,” Journal of Oral Rehabilitation, vol. 35, no. 3, pp. 229–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Fitzgibbon, Immediately-loaded Brånemark TiUnite implants in the sheep mandibular model [DClinDent thesis], Otago University, Dunedin, New Zealand, 2008.
  31. J. H. Kim, Immediately-loaded 3i Osseotite NT implants in the sheep mandibular model [DClinDent thesis], University of Otago, Dunedin, New Zealand, 2007.
  32. J. M. Macak, L. V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, and P. Schmuki, “Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization,” Journal of Electroceramics, vol. 16, no. 1, pp. 29–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. I. C. Lavos-Valereto, B. König, C. Rossa, E. Marcantonio, and A. C. Zavaglia, “A study of histological responses from Ti-6Al-7Nb alloy dental implants with and without plasma-sprayed hydroxyapatite coating in dogs,” Journal of Materials Science: Materials in Medicine, vol. 12, no. 3, pp. 273–276, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Lee, S. Hurson, H. Tadros, P. Schüpbach, C. Susin, and U. M. E. Wikesjö, “Crestal remodelling and osseointegration at surface-modified commercially pure titanium and titanium alloy implants in a canine model,” Journal of Clinical Periodontology, vol. 39, no. 8, pp. 781–788, 2012. View at Publisher · View at Google Scholar · View at Scopus