Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 895976, 12 pages
http://dx.doi.org/10.1155/2015/895976
Research Article

Icariin Intervenes in Cardiac Inflammaging through Upregulation of SIRT6 Enzyme Activity and Inhibition of the NF-Kappa B Pathway

1Center of Disease Prevention and Treatment, Shanghai Guanghua Hospital of Integrative Traditional Chinese and Western Medicine, Shanghai 200052, China
2Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
3Department of Perinatal Medicine, Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women’s Hospital, Parkville, VIC 3052, Australia
4Medical College, China Three Gorges University, Yichang 443002, China
5Key Laboratory of Cellular and Molecular Biology, Huashan Hospital, Fudan University, Shanghai 200040, China
6Department of Diseases Prevention and Healthcare, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China

Received 19 June 2014; Revised 23 July 2014; Accepted 7 August 2014

Academic Editor: Javier González-Gallego

Copyright © 2015 Yang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L.-K. Pei, B.-L. Guo, S.-Q. Sun, and W.-H. Huang, “Study on the identification of some species of Herba Epimedii with FTIR,” Guang Pu Xue Yu Guang Pu Fen Xi, vol. 28, no. 1, pp. 55–60, 2008. View at Google Scholar · View at Scopus
  2. S. C. Wing Sze, Y. Tong, T. B. Ng, C. L. Yin Cheng, and H. P. Cheung, “Herba Epimedii: anti-oxidative properties and its medical implications,” Molecules, vol. 15, no. 11, pp. 7861–7870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z.-W. Hu, Z.-Y. Shen, and J.-H. Huang, “Experimental study on effect of epimedium flavonoids in protecting telomere length of senescence cells HU,” Zhongguo Zhong Xi Yi Jie He Za Zhi, vol. 24, no. 12, pp. 1094–1097, 2004. View at Google Scholar · View at Scopus
  4. W.-J. Cai, X.-M. Zhang, and J.-H. Huang, “Effect of Epimedium flavonoids in retarding aging of C. elegans,” Zhongguo Zhong Xi Yi Jie He Za Zhi, vol. 28, no. 6, pp. 522–525, 2008. View at Google Scholar · View at Scopus
  5. Z. Y. Shen, C. Y. Yuan, J. H. Huang et al., “The efficacy of epimedium flavonoids on senescence-delaying in Drosophila and its under-lying molecular mechanisms,” Chinese Journal of Gerontology, vol. 9, pp. 1061–1063, 2005. View at Google Scholar
  6. B. Wu, S. Yan, Z. Lin et al., “Metabonomic study on ageing: NMR-based investigation into rat urinary metabolites and the effect of the total flavone of Epimedium,” Molecular BioSystems, vol. 4, no. 8, pp. 855–861, 2008. View at Publisher · View at Google Scholar
  7. S. Yan, B. Wu, Z. Lin et al., “Metabonomic characterization of aging and investigation on the anti-aging effects of total flavones of Epimedium,” Molecular BioSystems, vol. 5, no. 10, pp. 1204–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W.-J. Cai, J.-H. Huang, S.-Q. Zhang et al., “Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans,” PLoS ONE, vol. 6, no. 12, Article ID e28835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. de Oliveira, T. F. Pais, and T. F. Outeiro, “Sirtuins: common targets in aging and in neurodegeneration,” Current Drug Targets, vol. 11, no. 10, pp. 1270–1280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. A. Frye, “Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity,” Biochemical and Biophysical Research Communications, vol. 260, no. 1, pp. 273–279, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Frye, “Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins,” Biochemical and Biophysical Research Communications, vol. 273, no. 2, pp. 793–798, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. I. Tennen and K. F. Chua, “Chromatin regulation and genome maintenance by mammalian SIRT6,” Trends in Biochemical Sciences, vol. 36, no. 1, pp. 39–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kaidi, B. T. Weinert, C. Choudhary, and S. P. Jackson, “Human SIRT6 promotes DNA end resection through CtIP deacetylation,” Science, vol. 329, no. 5997, pp. 1348–1353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Mostoslavsky, K. F. Chua, D. B. Lombard et al., “Genomic instability and aging-like phenotype in the absence of mammalian SIRT6,” Cell, vol. 124, no. 2, pp. 315–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Xiao, H.-S. Kim, T. Lahusen et al., “SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice,” The Journal of Biological Chemistry, vol. 285, no. 47, pp. 36776–36784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H.-S. Kim, C. Xiao, R.-H. Wang et al., “Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis,” Cell Metabolism, vol. 12, no. 3, pp. 224–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Natoli, “When Sirtuins and NF-κB Collide,” Cell, vol. 136, no. 1, pp. 19–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Salminen, J. Ojala, J. Huuskonen, A. Kauppinen, T. Suuronen, and K. Kaarniranta, “Interaction of aging-associated signaling cascades: Inhibition of NF-κB signaling by longevity factors FoxOs and SIRT1,” Cellular and Molecular Life Sciences, vol. 65, no. 7-8, pp. 1049–1058, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. L. A. Kawahara, E. Michishita, A. S. Adler et al., “SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span,” Cell, vol. 136, no. 1, pp. 62–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Kipshidze, J. J. Ferguson III, M. H. Keelan Jr. et al., “Endoluminal reconstruction of the arterial wall with endothelial cell/glue matrix reduces restenosis in an atherosclerotic rabbit,” Journal of the American College of Cardiology, vol. 36, no. 4, pp. 1396–1403, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Ding and N. D. Vaziri, “Calcium channel blockade enhances nitric oxide synthase expression by cultured endothelial cells,” Hypertension, vol. 32, no. 4, pp. 718–723, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Franceschi, M. Bonafè, S. Valensin et al., “Inflamm-aging. An evolutionary perspective on immunosenescence,” Annals of the New York Academy of Sciences, vol. 908, pp. 244–254, 2000. View at Google Scholar · View at Scopus
  23. C. Franceschi, M. Capri, D. Monti et al., “Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans,” Mechanisms of Ageing and Development, vol. 128, no. 1, pp. 92–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Franceschi, “Inflammaging as a major characteristic of old people: can it be prevented or cured?” Nutrition Reviews, vol. 65, no. 3, pp. S173–S176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Vasto, G. Candore, C. R. Balistreri et al., “Inflammatory networks in ageing, age-related diseases and longevity,” Mechanisms of Ageing and Development, vol. 128, no. 1, pp. 83–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. de Martinis, C. Franceschi, D. Monti, and L. Ginaldi, “Inflammation markers predicting frailty and mortality in the elderly,” Experimental and Molecular Pathology, vol. 80, no. 3, pp. 219–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. de Martinis, C. Franceschi, D. Monti, and L. Ginaldi, “Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity,” FEBS Letters, vol. 579, no. 10, pp. 2035–2039, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Ginaldi, M. De Martinis, D. Monti, and C. Franceschi, “Chronic antigenic load and apoptosis in immunosenescence,” Trends in Immunology, vol. 26, no. 2, pp. 79–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Vasto, G. Carruba, D. Lio et al., “Inflammation, ageing and cancer,” Mechanisms of Ageing and Development, vol. 130, no. 1-2, pp. 40–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Sander, K. Avlund, M. Lauritzen et al., “Aging-From molecules to populations,” Mechanisms of Ageing and Development, vol. 129, no. 10, pp. 614–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Salvioli, M. Capri, S. Valensin et al., “Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology,” Current Pharmaceutical Design, vol. 12, no. 24, pp. 3161–3171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Potter, H. J. Cordell, A. Barton et al., “Association between anti-tumour necrosis factor treatment response and genetic variants within the TLR and NFκB signalling pathways,” Annals of the Rheumatic Diseases, vol. 69, no. 7, pp. 1315–1320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Abraham, “NF-kappaB activation,” Critical Care Medicine, vol. 28, no. 4, pp. 100–104, 2000. View at Google Scholar
  34. D. Kesanakurti, C. Chetty, D. Rajasekhar Maddirela, M. Gujrati, and J. S. Rao, “Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma,” Oncogene, vol. 10, pp. 1038–1043, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Lio, L. Scola, A. Crivello et al., “Inflammation, genetics, and longevity: Further studies on the protective effects in men of IL-10-1082 promoter SNP and its interaction with TNF-α-308 promoter SNP,” Journal of Medical Genetics, vol. 40, no. 4, pp. 296–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Michishita, R. A. McCord, E. Berber et al., “SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin,” Nature, vol. 452, no. 7186, pp. 492–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. B. Lombard, B. Schwer, F. W. Alt, and R. Mostoslavsky, “SIRT6 in DNA repair, metabolism and ageing,” Journal of Internal Medicine, vol. 263, no. 2, pp. 128–141, 2008. View at Publisher · View at Google Scholar · View at Scopus