Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 926912, 10 pages
http://dx.doi.org/10.1155/2015/926912
Research Article

Relation between Birth Weight, Growth, and Subclinical Atherosclerosis in Adulthood

1Department of Pediatrics, Medical School, University of São Paulo (USP), 01246-903 São Paulo, SP, Brazil
2Department of Clinical Medicine, Medical School, University of São Paulo (USP), 01246-903 São Paulo, SP, Brazil

Received 13 July 2014; Accepted 24 September 2014

Academic Editor: Kosmas Paraskevas

Copyright © 2015 Maria Helena Valente et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background and Objectives. Adverse conditions in the prenatal environment and in the first years of life are independently associated with increased risk for cardiovascular disease. This paper aims to study the relation between birthweight, growth in the first year of life, and subclinical atherosclerosis in adults. Methods. 88 adults aged between 20 and 31 were submitted to sociodemographic qualities, anthropometric data, blood pressure measurements, metabolic profile, and evaluation of subclinical atherosclerosis. Results. Birthweight <2,500 grams (g) was negatively correlated with (a) increased waist-to-hip ratio (WHR), according to regression coefficient (RC) equal to −0.323, 95% CI [−0.571, −0.075] ; (b) diastolic blood pressure (RC = −4.744, 95% CI [−9.017, −0.470] ); (c) low HDL-cholesterol (RC = −0.272, 95% CI [−0.516, −0.029] ); (d) frequency of intima-media thickness (IMT) of left carotid >75th percentile (RC = −0.242, 95% CI [−0.476, −0.008] ). Birthweight >3,500 g was associated with (a) BMI >25.0 kg/m2, (RC = 0.317, 95% CI [0.782, 0.557] ); (b) increased waist circumference (RC = 0.284, 95% CI [0.054, 0.513] ); (c) elevated WHR (RC = 0.280, 95% CI [0.054, 0.505] ); (d) minimum subcutaneous adipose tissue (SAT) (RC = 4.354, 95% CI [0.821, 7.888] ); (e) maximum SAT (RC = 7.095, 95% CI [0.608, 13.583] ); (f) right lobe of the liver side (RC = 6.896, 95% CI [1.946, 11.847] ); (g) frequency’s right lobe of the liver >75th percentile (RC = 0.361, 95% CI [0.169, 0.552] ). Weight gain in the first year of life was inversely correlated with (a) mean IMT of left carotid (RC = −0.046, 95% CI [−0.086, −0.006] ; (b) frequency IMT of left carotid >75th percentile (RC = −0.253, 95% CI [−0.487, −0.018] ); (c) mean IMT (RC = −0.038, 95% CI [0.073, −0.002] ); (d) the frequency of the mean IMT >75th percentile (RC = −0.241, 95% CI [−0.442, −0.041] ). Conclusions. Adults birthweight <2,500 g and >3,500 g and with insufficient weight gain in the first year of life have showed different metabolic phenotypes, but all of them were related to subclinical atherosclerosis.