Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 945846, 10 pages
http://dx.doi.org/10.1155/2015/945846
Research Article

Skin-Derived Precursor Cells Promote Angiogenesis and Stimulate Proliferation of Endogenous Neural Stem Cells after Cerebral Infarction

1State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
2Department of Urology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
3Department of Endocrinology, Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China
4Department of Anatomy, School of Medicine, Nankai University, Tianjin 300071, China

Received 9 October 2014; Revised 3 January 2015; Accepted 5 January 2015

Academic Editor: Gang Niu

Copyright © 2015 Duo Mao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. McKay, “Stem cells in the central nervous system,” Science, vol. 276, no. 5309, pp. 66–71, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Grabowski, P. Brundin, and B. B. Johansson, “Functional integration of cortical grafts placed in brain infarcts of rats,” Annals of Neurology, vol. 34, no. 3, pp. 362–368, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Li, J. Chen, L. Wang, M. Lu, and M. Chopp, “Treatment of stroke in rat with intracarotid administration of marrow stromal cells,” Neurology, vol. 56, no. 12, pp. 1666–1672, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. I. Savitz, D. M. Rosenbaum, J. H. Dinsmore, L. R. Wechsler, and L. R. Caplan, “Cell transplantation for stroke,” Annals of Neurology, vol. 52, no. 3, pp. 266–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Suárez-Monteagudo, P. Hernández-Ramírez, L. Alvarez-González et al., “Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study,” Restorative Neurology and Neuroscience, vol. 27, no. 3, pp. 151–161, 2009. View at Publisher · View at Google Scholar
  6. J. Chen, Y. Li, L. Wang et al., “Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats,” Stroke, vol. 32, no. 4, pp. 1005–1011, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. K. J. L. Fernandes, I. A. McKenzie, P. Mill et al., “A dermal niche for multipotent adult skin-derived precursor cells,” Nature Cell Biology, vol. 6, no. 11, pp. 1082–1093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. L. Fernandes, J. G. Toma, and F. D. Miller, “Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 363, no. 1489, pp. 185–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Biernaskie, I. A. McKenzie, J. G. Toma, and F. D. Miller, “Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny,” Nature Protocols, vol. 1, no. 6, pp. 2803–2812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Toma, I. A. McKenzie, D. Bagli, and F. D. Miller, “Isolation and characterization of multipotent skin-derived precursors from human skin,” Stem Cells, vol. 23, no. 6, pp. 727–737, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Amoh, L. Li, K. Katsuoka, and R. M. Hoffman, “Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function,” Cell Cycle, vol. 7, no. 12, pp. 1865–1869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Amoh, L. Li, R. Campillo et al., “Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17734–17738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. I. A. McKenzie, J. Biernaskie, J. G. Toma, R. Midha, and F. D. Miller, “Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system,” The Journal of Neuroscience, vol. 26, no. 24, pp. 6651–6660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. J. L. Fernandes, N. R. Kobayashi, C. J. Gallagher et al., “Analysis of the neurogenic potential of multipotent skin-derived precursors,” Experimental Neurology, vol. 201, no. 1, pp. 32–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Chen, Z. G. Zhang, Y. Li et al., “Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats,” Circulation Research, vol. 92, no. 6, pp. 692–699, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Li, J. Chen, X. G. Chen et al., “Human marrow stromal cell therapy for stroke in rat: Neurotrophins and functional recovery,” neurology, vol. 59, no. 4, pp. 514–523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Pili, J. Chang, J. Muhlhauser et al., “Adenovirus-mediated gene transfer of fibroblast growth factor-1: angiogenesis and tumorigenicity in nude mice,” International Journal of Cancer, vol. 73, no. 2, pp. 258–263, 1997. View at Publisher · View at Google Scholar
  18. J. A. Gorski, S. R. Zeiler, S. Tamowski, and K. R. Jones, “Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites,” The Journal of Neuroscience, vol. 23, no. 17, pp. 6856–6865, 2003. View at Google Scholar · View at Scopus
  19. S. K. Steinbach, O. El-Mounayri, R. S. Dacosta et al., “Directed differentiation of skin-derived precursors into functional vascular smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 12, pp. 2938–2948, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Amoh, L. Li, M. Yang et al., “Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13291–13295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Aki, Y. Amoh, N. Li, K. Katsuoka, and R. M. Hoffman, “Nestin-expressing interfollicular blood vessel network contributes to skin transplant survival and wound healing,” Journal of Cellular Biochemistry, vol. 110, no. 1, pp. 80–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. T. Chen, C. Y. Hsu, E. L. Hogan, H. Maricq, and J. D. Balentine, “A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction,” Stroke, vol. 17, no. 4, pp. 738–743, 1986. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Taupin, “BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation,” Brain Research Reviews, vol. 53, no. 1, pp. 198–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Joannides, P. Gaughwin, C. Schwiening et al., “Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells,” The Lancet, vol. 364, no. 9429, pp. 172–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Yamashita, M. Ninomiya, P. H. Acosta et al., “Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum,” The Journal of Neuroscience, vol. 26, no. 24, pp. 6627–6636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, “Neuronal replacement from endogenous precursors in the adult brain after stroke,” Nature Medicine, vol. 8, no. 9, pp. 963–970, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-W. Yoo, S.-S. Kim, S.-Y. Lee et al., “Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model,” Experimental and Molecular Medicine, vol. 40, no. 4, pp. 387–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. W. C. Shyu, D. D. Liu, S. Z. Lin et al., “Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke,” The Journal of Clinical Investigation, vol. 118, no. 7, pp. 2482–2495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Li, J. Y. Liu, S. Wang et al., “Multipotent neural crest stem cell-like cells from rat vibrissa dermal papilla induce neuronal differentiation of PC12 cells,” BioMed Research International, vol. 2014, Article ID 186239, 13 pages, 2014. View at Publisher · View at Google Scholar
  30. W. Gu, F. Zhang, Q. Xue, Z. Ma, P. Lu, and B. Yu, “Bone mesenchymal stromal cells stimulate neurite outgrowth of spinal neurons by secreting neurotrophic factors,” Neurological Research, vol. 34, no. 2, pp. 172–180, 2012. View at Google Scholar · View at Scopus
  31. M. Yuan, S. J. Wen, C. X. Yang et al., “Transplantation of neural stem cells overexpressing glial cell line-derived neurotrophic factor enhances Akt and Erk1/2 signaling and neurogenesis in rats after stroke,” Chinese Medical Journal, vol. 126, no. 7, pp. 1302–1309, 2013. View at Google Scholar · View at Scopus
  32. K. M. Yamada, S. Aota, S. K. Akiyama, and S. E. LaFlamme, “Mechanisms of fibronectin and integrin function during cell adhesion and migration,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 57, pp. 203–212, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Sakai, K. J. Johnson, M. Murozono et al., “Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis,” Nature Medicine, vol. 7, no. 3, pp. 324–330, 2001. View at Publisher · View at Google Scholar · View at Scopus