Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 949624, 15 pages
http://dx.doi.org/10.1155/2015/949624
Research Article

Transcriptional Changes Associated with Long-Term Left Ventricle Volume Overload in Rats: Impact on Enzymes Related to Myocardial Energy Metabolism

1Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada G1V 4G5
2Sherbrooke Molecular Imaging Center, Research Center of Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4

Received 25 June 2015; Accepted 13 September 2015

Academic Editor: John Baugh

Copyright © 2015 Elise Roussel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O. Bonow, “Chronic mitral regurgitation and aortic regurgitation: have indications for surgery changed?” Journal of the American College of Cardiology, vol. 61, no. 7, pp. 693–701, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Nishimura, C. M. Otto, R. O. Bonow et al., “2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” Journal of the American College of Cardiology, vol. 63, no. 22, pp. e57–e185, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Carapetis, A. C. Steer, E. K. Mulholland, and M. Weber, “The global burden of group A streptococcal diseases,” The Lancet Infectious Diseases, vol. 5, no. 11, pp. 685–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Carapetis, M. McDonald, and N. J. Wilson, “Acute rheumatic fever,” The Lancet, vol. 366, no. 9480, pp. 155–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Barnes, B. Pat, Y.-W. Chen et al., “Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy,” Therapeutic Advances in Cardiovascular Disease, vol. 8, no. 3, pp. 97–118, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Zheng, Y. Chen, B. Pat et al., “Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog,” Circulation, vol. 119, no. 15, pp. 2086–2095, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Miyazaki, N. Oka, A. Koga, H. Ohmura, T. Ueda, and T. Imaizumi, “Comparison of gene expression profiling in pressure and volume overload-induced myocardial hypertrophies in rats,” Hypertension Research, vol. 29, no. 12, pp. 1029–1045, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Champetier, A. Bojmehrani, J. Beaudoin et al., “Gene profiling of left ventricle eccentric hypertrophy in aortic regurgitation in rats: rationale for targeting the β-adrenergic and renin-angiotensin systems,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 296, no. 3, pp. H669–H677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Lachance, É. Plante, A.-A. Bouchard-Thomassin et al., “Moderate exercise training improves survival and ventricular remodeling in an animal model of left ventricular volume overload,” Circulation: Heart Failure, vol. 2, no. 5, pp. 437–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Plante, D. Lachance, S. Champetier et al., “Benefits of long-term β-blockade in experimental chronic aortic regurgitation,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 294, no. 4, pp. H1888–H1895, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Lachance, S. Champetier, E. Plante et al., “Effects of exercise in volume overload: insights from a model of aortic regurgitation,” Medicine and Science in Sports and Exercise, vol. 41, no. 6, pp. 1230–1238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A.-A. Bouchard-Thomassin, D. Lachance, M.-C. Drolet, J. Couet, and M. Arsenault, “A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 300, no. 1, pp. H125–H134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Arsenault, A. Zendaoui, É. Roussel et al., “Angiotensin II-converting enzyme inhibition improves survival, ventricular remodeling, and myocardial energetics in experimental aortic regurgitation,” Circulation: Heart Failure, vol. 6, no. 5, pp. 1021–1028, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Lachance, W. Dhahri, M. Drolet et al., “Endurance training or beta-blockade can partially block the energy metabolism remodeling taking place in experimental chronic left ventricle volume overload,” BMC Cardiovascular Disorders, vol. 14, article 190, 2014. View at Publisher · View at Google Scholar
  15. W. Dhahri, J. Couet, É. Roussel, M.-C. Drolet, and M. Arsenault, “Fenofibrate reduces cardiac remodeling and improves cardiac function in a rat model of severe left ventricle volume overload,” Life Sciences, vol. 92, no. 1, pp. 26–34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Dhahri, M.-C. Drolet, E. Roussel, J. Couet, and M. Arsenault, “Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation,” BMC Cardiovascular Disorders, vol. 14, no. 1, article 123, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Plante, J. Couet, M. Gaudreau, M.-P. Dumas, M.-C. Drolet, and M. Arsenault, “Left ventricular response to sustained volume overload from chronic aortic valve regurgitation in rats,” Journal of Cardiac Failure, vol. 9, no. 2, pp. 128–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Arsenault, E. Plante, M.-C. Drolet, and J. Couet, “Experimental aortic regurgitation in rats under echocardiographic guidance,” Journal of Heart Valve Disease, vol. 11, no. 1, pp. 128–134, 2002. View at Google Scholar · View at Scopus
  19. G. W. Wright and R. M. Simon, “A random variance model for detection of differential gene expression in small microarray experiments,” Bioinformatics, vol. 19, no. 18, pp. 2448–2455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Hosack, G. Dennis Jr., B. T. Sherman, H. C. Lane, and R. A. Lempicki, “Identifying biological themes within lists of genes with EASE,” Genome Biology, vol. 4, no. 10, article R70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Zendaoui, D. Lachance, É. Roussel, J. Couet, and M. Arsenault, “Usefulness of carvedilol in the treatment of chronic aortic valve regurgitation,” Circulation: Heart Failure, vol. 4, no. 2, pp. 207–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. L. Ménard, E. Croteau, O. Sarrhini et al., “Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats,” American Journal of Physiology—Endocrinology & Metabolism, vol. 298, no. 5, pp. E1049–E1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. L. Ménard, X. Ci, F. Frisch et al., “Mechanism of reduced myocardial glucose utilization during acute hypertriglyceridemia in rats,” Molecular Imaging and Biology, vol. 11, no. 1, pp. 6–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Croteau, S. Gascon, M. Bentourkia et al., “[11C]Acetate rest–stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats,” Nuclear Medicine and Biology, vol. 39, no. 2, pp. 287–294, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Croteau, F. Bénard, J. Cadorette et al., “Quantitative gated PET for the assessment of left ventricular function in small animals,” Journal of Nuclear Medicine, vol. 44, no. 10, pp. 1655–1661, 2003. View at Google Scholar · View at Scopus
  26. W. Dhahri, É. Roussel, M. C. Drolet et al., “Metformin reduces left ventricular eccentric re-modeling in experimental volume overload in the rat,” Journal of Clinical & Experimental Cardiology, vol. 3, article 217, 2012. View at Publisher · View at Google Scholar
  27. E. Croteau, F. Bénard, M. Bentourkia, J. Rousseau, M. Paquette, and R. Lecomte, “Quantitative myocardial perfusion and coronary reserve in rats with 13N-ammonia and small animal PET: impact of anesthesia and pharmacologic stress agents,” Journal of Nuclear Medicine, vol. 45, no. 11, pp. 1924–1930, 2004. View at Google Scholar · View at Scopus
  28. J.-C. Fruchart, B. Staels, and P. Duriez, “PPARS, metabolic disease and atherosclerosis,” Pharmacological Research, vol. 44, no. 5, pp. 345–352, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Lachance, É. Plante, É. Roussel, M.-C. Drolet, J. Couet, and M. Arsenault, “Early left ventricular remodeling in acute severe aortic regurgitation: insights from an animal model,” Journal of Heart Valve Disease, vol. 17, no. 3, pp. 300–308, 2008. View at Google Scholar · View at Scopus
  30. J. Barnes and L. J. Dell'Italia, “The multiple mechanistic faces of a pure volume overload: implications for therapy,” The American Journal of the Medical Sciences, vol. 348, no. 4, pp. 337–346, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. T. D. Ryan, E. C. Rothstein, I. Aban et al., “Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload,” Journal of the American College of Cardiology, vol. 49, no. 7, pp. 811–821, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Nemoto, P. Razeghi, M. Ishiyama, G. De Freitas, H. Taegtmeyer, and B. A. Carabello, “PPAR-gamma agonist rosiglitazone ameliorates ventricular dysfunction in experimental chronic mitral regurgitation,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 288, no. 1, pp. H77–H82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. N. Althurwi, O. H. Elshenawy, and A. O. S. El-Kadi, “Fenofibrate modulates cytochrome P450 and arachidonic acid metabolism in the heart and protects against isoproterenol-induced cardiac hypertrophy,” Journal of Cardiovascular Pharmacology, vol. 63, no. 2, pp. 167–177, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Zou, K. Le, S. Xu et al., “Fenofibrate ameliorates cardiac hypertrophy by activation of peroxisome proliferator-activated receptor-alpha partly via preventing p65-NFkappaB binding to NFATc4,” Molecular and Cellular Endocrinology, vol. 370, no. 1-2, pp. 103–112, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. P. J. H. Smeets, H. M. de Vogel-van Den Bosch, P. H. M. Willemsen et al., “Transcriptomic analysis of PPARα-dependent alterations during cardiac hypertrophy,” Physiological Genomics, vol. 36, no. 1, pp. 15–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. J. H. Smeets, B. E. J. Teunissen, P. H. M. Willemsen et al., “Cardiac hypertrophy is enhanced in PPARα-/- mice in response to chronic pressure overload,” Cardiovascular Research, vol. 78, no. 1, pp. 79–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T.-A. S. Duhaney, L. Cui, M. K. Rude et al., “Peroxisome proliferator-activated receptor α-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload,” Hypertension, vol. 49, no. 5, pp. 1084–1094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Balakumar, A. Rohilla, and N. Mahadevan, “Pleiotropic actions of fenofibrate on the heart,” Pharmacological Research, vol. 63, no. 1, pp. 8–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. S. de Silva, R. M. Wilson, C. Hutchinson et al., “Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 296, no. 6, pp. H1983–H1993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. N. K. LeBrasseur, T.-A. S. Duhaney, D. S. De Silva et al., “Effects of fenofibrate on cardiac remodeling in aldosterone-induced hypertension,” Hypertension, vol. 50, no. 3, pp. 489–496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-W. Chen, B. Pat, J. D. Gladden et al., “Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 300, no. 6, pp. H2251–H2260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. N. Diep, K. Benkirane, F. Amiri, J. S. Cohn, D. Endemann, and E. L. Schiffrin, “PPARα activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 2, pp. 295–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Jia, R. Xue, G. Liu et al., “HMGB1 is involved in the protective effect of the PPAR alpha agonist fenofibrate against cardiac hypertrophy,” PPAR Research, vol. 2014, Article ID 541394, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus