Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 1289157, 14 pages
http://dx.doi.org/10.1155/2016/1289157
Research Article

In Vitro and In Vivo Biofilm Characterization of Methicillin-Resistant Staphylococcus aureus from Patients Associated with Pharyngitis Infection

Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003, India

Received 19 July 2016; Accepted 15 August 2016

Academic Editor: Carla R. Arciola

Copyright © 2016 Shanmugaraj Gowrishankar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The present investigation was deliberately aimed at evaluating the biofilm-forming ability of 63 clinical MRSA isolates recovered from pharyngitis patients through different phenotypic assays. The molecular detection of adhesion (icaA/icaD/icaB/icaC), adhesins (fnbA/fnbB, clfA, and cna), staphylococcal accessory regulator (sarA), and α-toxin (hla) genes was done by employing polymerase chain reaction (PCR). Out of 63 isolates, 49 (77.8%) were found slime positive by the Congo red agar (CRA) method and 44 (69.8%) as biofilm positive by the quantitative microtitre plate assays. The results of MATH assay showed that most of the test pathogens are hydrophilic in nature. The molecular investigation of biofilm-associated genes revealed that 84.13% () of isolates were found positive for icaADBC genes. The fnbA and fnbB genes were present in 49 (77.8%) and 51 (81%) MRSA isolates, respectively. In addition, 58.7% (), 73% (), and 69.8% () of the isolates harboured the clfA, cna, and hla genes, respectively. Further, nearly 81% () of the isolates were found positive for the gene sarA and all the ica negative isolates were also negative for the gene. Furthermore, the results of in vivo adherence assay unveiled the factual commonness in the in vitro adherence method.