Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 1823482, 8 pages
http://dx.doi.org/10.1155/2016/1823482
Review Article

The Association between Abnormal Long Noncoding RNA MALAT-1 Expression and Cancer Lymph Node Metastasis: A Meta-Analysis

State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China

Received 16 April 2015; Accepted 14 July 2015

Academic Editor: Stephen H. Safe

Copyright © 2016 Jun Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Bray, J.-S. Ren, E. Masuyer, and J. Ferlay, “Global estimates of cancer prevalence for 27 sites in the adult population in 2008,” International Journal of Cancer, vol. 132, no. 5, pp. 1133–1145, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. González and A. Agudo, “Carcinogenesis, prevention and early detection of gastric cancer: where we are and where we should go,” International Journal of Cancer, vol. 130, no. 4, pp. 745–753, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kim, H. Nam, and D. Lee, “Exploring molecular links between lymph node invasion and cancer prognosis in human breast cancer,” BMC Systems Biology, vol. 5, supplement 2, article S4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. E. Ellsworth, L. A. Field, B. Love, J. L. Kane, J. A. Hooke, and C. D. Shriver, “Differential gene expression in primary breast tumors associated with lymph node metastasis,” International Journal of Breast Cancer, vol. 2011, Article ID 142763, 7 pages, 2011. View at Publisher · View at Google Scholar
  5. N. B. Jamieson, D. C. Morran, J. P. Morton et al., “MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma,” Clinical Cancer Research, vol. 18, no. 2, pp. 534–545, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Liu, A. Kolokythas, J. Wang, H. Huang, and X. Zhou, “Gene expression signatures of lymph node metastasis in oral cancer: molecular characteristics and clinical significances,” Current Cancer Therapy Reviews, vol. 6, no. 4, pp. 294–307, 2010. View at Publisher · View at Google Scholar
  7. B. Weigelt, L. F. A. Wessels, A. J. Bosma et al., “No common denominator for breast cancer lymph node metastasis,” British Journal of Cancer, vol. 93, no. 8, pp. 924–932, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Guttman, J. Donaghey, B. W. Carey et al., “lincRNAs act in the circuitry controlling pluripotency and differentiation,” Nature, vol. 477, no. 7364, pp. 295–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Ji, S. Diederichs, W. Wang et al., “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer,” Oncogene, vol. 22, no. 39, pp. 8031–8041, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Gutschner, M. Hammerle, M. Eissmann et al., “The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells,” Cancer Research, vol. 73, no. 3, pp. 1180–1189, 2013. View at Publisher · View at Google Scholar
  11. Y. Han, Y. Liu, L. Nie, Y. Gui, and Z. Cai, “Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder,” Urology, vol. 81, no. 1, pp. 209.e1–209.e7, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wang, L. Su, X. Chen et al., “MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF,” Biomedicine and Pharmacotherapy, vol. 68, no. 5, pp. 557–564, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. West, C. P. Davis, H. Sunwoo et al., “The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites,” Molecular Cell, vol. 55, no. 5, pp. 791–802, 2014. View at Publisher · View at Google Scholar
  14. V. Tripathi, J. D. Ellis, Z. Shen et al., “The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation,” Molecular Cell, vol. 39, no. 6, pp. 925–938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Xu, M. Yang, J. Tian, X. Wang, and Z. Li, “MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis,” International Journal of Oncology, vol. 39, no. 1, pp. 169–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Tian, X. Zhang, Y. Hao, Z. Fang, and Y. He, “Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma,” Melanoma Research, vol. 24, no. 4, pp. 335–341, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. K.-X. Ma, H.-J. Wang, X.-R. Li et al., “Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma,” Tumor Biology, vol. 36, no. 5, pp. 3355–3359, 2015. View at Publisher · View at Google Scholar
  18. L. H. Schmidt, T. Spieker, S. Koschmieder et al., “The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth,” Journal of Thoracic Oncology, vol. 6, no. 12, pp. 1984–1992, 2011. View at Publisher · View at Google Scholar
  19. Y. Dong, G. Liang, B. Yuan, C. Yang, R. Gao, and X. Zhou, “MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway,” Tumor Biology, vol. 36, no. 3, pp. 1477–1486, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Hu, Y. Wu, D. Tan et al., “Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma,” Journal of Experimental & Clinical Cancer Research, vol. 34, no. 1, article 7, 2015. View at Publisher · View at Google Scholar
  21. J.-H. Liu, G. Chen, Y.-W. Dang, C.-J. Li, and D.-Z. Luo, “Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues,” Asian Pacific Journal of Cancer Prevention, vol. 15, no. 7, pp. 2971–2977, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. H.-T. Zheng, D.-B. Shi, Y.-W. Wang et al., “High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer,” International Journal of Clinical and Experimental Pathology, vol. 7, no. 6, pp. 3174–3181, 2014. View at Google Scholar · View at Scopus
  23. E. J. Pang, R. Yang, X. B. Fu, and Y. F. Liu, “Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer,” Tumor Biology, vol. 36, no. 4, pp. 2403–2407, 2015. View at Publisher · View at Google Scholar
  24. Y. Okugawa, Y. Toiyama, K. Hur et al., “Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis,” Carcinogenesis, vol. 35, no. 12, pp. 2731–2739, 2014. View at Publisher · View at Google Scholar
  25. H.-M. Zhang, F.-Q. Yang, S.-J. Chen, J. Che, and J.-H. Zheng, “Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma,” Tumor Biology, vol. 36, no. 4, pp. 2947–2955, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Hirata, Y. Hinoda, V. Shahryari et al., “Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205,” Cancer Research, vol. 75, no. 7, pp. 1322–1331, 2015. View at Publisher · View at Google Scholar
  27. M. Lai, Z. Yang, L. Zhou et al., “Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation,” Medical Oncology, vol. 29, no. 3, pp. 1810–1816, 2012. View at Publisher · View at Google Scholar
  28. K. Tano, R. Mizuno, T. Okada et al., “MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes,” FEBS Letters, vol. 584, no. 22, pp. 4575–4580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Yamada, J. Kano, H. Tsunoda et al., “Phenotypic characterization of endometrial stromal sarcoma of the uterus,” Cancer Science, vol. 97, no. 2, pp. 106–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Xu, M. Yang, J. Tian, X. Wang, and Z. Li, “MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis,” International Journal of Oncology, vol. 39, no. 1, pp. 169–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Wang, S. Ren, R. Chen et al., “Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer,” Oncotarget, vol. 5, no. 22, pp. 11091–11102, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Gupta, N. Shah, K. C. Wang et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. R. Prensner and A. M. Chinnaiyan, “The emergence of lncRNAs in cancer biology,” Cancer Discovery, vol. 1, no. 5, pp. 391–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Gutschner, M. Hämmerle, and S. Diederichs, “MALAT1—a paradigm for long noncoding RNA function in cancer,” Journal of Molecular Medicine, vol. 91, no. 7, pp. 791–801, 2013. View at Publisher · View at Google Scholar · View at Scopus