Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 1952947, 9 pages
Research Article

Tropisetron Protects Against Acetaminophen-Induced Liver Injury via Suppressing Hepatic Oxidative Stress and Modulating the Activation of JNK/ERK MAPK Pathways

Department of Anesthesiology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan

Received 1 July 2016; Revised 9 September 2016; Accepted 3 October 2016

Academic Editor: Udayan Apte

Copyright © 2016 Fu-Chao Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Objectives. To investigate the protective effects of tropisetron on acetaminophen- (APAP-) induced liver injury in a mice model. Methods. C57BL/6 male mice were given tropisetron (0.3 to 10 mg/kg) 30 minutes before a hepatotoxic dose of acetaminophen (300 mg/kg) intraperitoneally. Twenty hours after APAP intoxication, sera alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, hepatic myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activities, and liver histopathological changes were examined. The MAP kinases were also detected by western blotting. Results. Our results showed that tropisetron pretreatment significantly attenuated the acute elevations of the liver enzyme ALT level, hepatic MPO activity, and hepatocytes necrosis in a dose-dependent manner (0.3–10 mg/kg) in APAP-induced hepatotoxicity mice. Tropisetron (1 and 3 mg/kg) suppressed APAP-induced hepatic lipid peroxidation expression and alleviated GSH and SOD depletion. Administration of tropisetron also attenuated the phosphorylation of c-Jun-NH2-terminal protein kinase (JNK) and extracellular signal-regulated kinase (ERK) caused by APAP. Conclusion. Our data demonstrated that tropisetron’s hepatoprotective effect was in part correlated with the antioxidant, which were mediated via JNK and ERK pathways on acetaminophen-induced liver injury in mice.