Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 4387461, 12 pages
http://dx.doi.org/10.1155/2016/4387461
Review Article

Avian Mycobacteriosis: Still Existing Threat to Humans

1Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
2Institute of Public Health in Ostrava, Partyzanske Namesti 7, 702 00 Ostrava, Czech Republic

Received 17 February 2016; Revised 31 May 2016; Accepted 19 June 2016

Academic Editor: Hesham H. Ali

Copyright © 2016 Michal Slany et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Euzéby, “List of bacterial names with standing in nomenclature: a folder available on the internet,” International Journal of Systematic Bacteriology, vol. 47, no. 2, pp. 590–592, 1997. View at Google Scholar · View at Scopus
  2. J. O. Falkinham III, “Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment,” Journal of Applied Microbiology, vol. 107, no. 2, pp. 356–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. “Commission Decision of March 31, 2004 amending decisions 93/52/EEC, 2001/618/EC and 2003/467/EC as regards the status of acceding countries with regard to brucellosis (B. melitensis), Aujeszky's disease, enzootic bovine leukosis, bovine brucellosis and tuberculosis and of France with regard to Aujeszky's disease (notified under document number C(2004) 1094) (text with EEA relevance, 2004/320/EC),” Official Journal of European Communication, vol. 102, p. 75, 2004.
  4. I. Trcka, J. Lamka, R. Suchy et al., “Mycobacterial infections in European wild boar (Sus scrofa) in the Czech Republic during the years 2002 to 2005,” Veterinarni Medicina, vol. 51, no. 5, pp. 320–332, 2006. View at Google Scholar · View at Scopus
  5. N. M. Shah, J. A. Davidson, L. F. Anderson et al., “Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007–2012,” BMC Infectious Diseases, vol. 16, no. 1, article 195, 2016. View at Publisher · View at Google Scholar
  6. J. Kazda, “The classification of mycobacteria with regard to their ecology,” in The Ecology of Mycobacteria: Impact on Animal's and Human's Health, J. Kazda, I. Pavlik, J. O. Falkinham III, and K. Hruska, Eds., pp. 9–10, Springer, Berlin, Germany, 1st edition, 2009. View at Google Scholar
  7. R. Schulze-Röbbecke, B. Janning, and R. Fischeder, “Occurrence of mycobacteria in biofilm samples,” Tubercle and Lung Disease, vol. 73, no. 3, pp. 141–144, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. D. E. Griffith, T. Aksamit, B. A. Brown-Elliott et al., “An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 4, pp. 367–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Tortoli, “The new mycobacteria: an update,” FEMS Immunology and Medical Microbiology, vol. 48, no. 2, pp. 159–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Cook, “Nontuberculous mycobacteria: opportunistic environmental pathogens for predisposed hosts,” British Medical Bulletin, vol. 96, no. 1, pp. 45–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. MacEk, M. Bodnarova, J. Zavada et al., “Mycobacterium marinum epididymoorchitis: case report and literature review,” Urologia Internationalis, vol. 87, no. 1, pp. 120–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Harmsen, S. Dostal, A. Roth et al., “RIDOM: Comprehensive and public sequence database for identification of Mycobacterium species,” BMC Infectious Diseases, vol. 3, article 26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Telenti, F. Marchesi, M. Balz, F. Bally, E. C. Bottger, and T. Bodmer, “Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis,” Journal of Clinical Microbiology, vol. 31, no. 2, pp. 175–178, 1993. View at Google Scholar · View at Scopus
  14. T. Adékambi, P. Colson, and M. Drancourt, “rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria,” Journal of Clinical Microbiology, vol. 41, no. 12, pp. 5699–5708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. H. Runyon, “Pathogenic mycobacteria,” Advanced Tuberculosis Research, vol. 14, pp. 235–287, 1965. View at Google Scholar
  16. I. Pavlik, L. Dvorska, M. Bartos et al., “Molecular epidemiology of bovine tuberculosis in the Czech Republic and Slovakia in the period 1965–2001 studied by spoligotyping,” Veterinarni Medicina, vol. 47, no. 7, pp. 181–194, 2002. View at Google Scholar · View at Scopus
  17. I. Pavlik, W. Y. Ayele, M. Havelkova, M. Svejnochova, V. Katalinic-Jankovic, and M. Zolnir-Dovc, “Mycobacterium bovis in human population in four Central European countries during 1990–1999,” Veterinarni Medicina, vol. 48, no. 4, pp. 90–98, 2003. View at Google Scholar · View at Scopus
  18. E. Wolinsky and W. B. Schaefer, “Proposed numbering scheme for mycobacterial serotypes by agglutination,” International Journal of Systematic Bacteriology, vol. 23, no. 2, pp. 182–183, 1973. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Mijs, P. de Haas, R. Rossau et al., “Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and ‘M. avium subsp. hominissuis’ for the human/porcine type of M. avium,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1505–1518, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Tell, L. Woods, and R. L. Cromie, “Mycobacteriosis in birds,” Revue Scientifique et Technique, vol. 20, no. 1, pp. 180–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Kyriakopoulos, P. T. Tassios, P. Matsiota-Bernard, E. Marinis, S. Tsaousidou, and N. J. Legakis, “Characterization to species level of Mycobacterium avium complex strains from human immunodeficiency virus-positive and -negative patients,” Journal of Clinical Microbiology, vol. 35, no. 11, pp. 3001–3003, 1997. View at Google Scholar · View at Scopus
  22. E. Tortoli, L. Rindi, M. J. Garcia et al., “Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov.,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 4, pp. 1277–1285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. I. Murcia, E. Tortoli, M. C. Menendez, E. Palenque, and M. J. Garcia, “Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 9, pp. 2049–2054, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Van Ingen, M. J. Boeree, K. Kösters et al., “Proposal to elevate Mycobacterium avium complex ITS sequevar MAC-Q to Mycobacterium vulneris sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 9, pp. 2277–2282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Tortoli, B. Adriani, S. Baruzzo et al., “Pulmonary disease due to Mycobacterium arosiense, an easily misidentified pathogenic novel mycobacterium,” Journal of Clinical Microbiology, vol. 47, no. 6, pp. 1947–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Bang, T. Herlin, M. Stegger et al., “Mycobacterium arosiense sp. nov., a slowly growing, scotochromogenic species causing osteomyelitis in an immunocompromised child,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 10, pp. 2398–2402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-Y. Kim, H. Yoo, B.-H. Jeong et al., “First case of nontuberculous mycobacterial lung disease caused by Mycobacterium marseillense in a patient with systemic lupus erythematosus,” Diagnostic Microbiology and Infectious Disease, vol. 79, no. 3, pp. 355–357, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Grottola, P. Roversi, A. Fabio et al., “Pulmonary disease caused by Mycobacterium marseillense, Italy,” Emerging Infectious Diseases, vol. 20, no. 10, pp. 1769–1770, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zurita, D. Ortega-Paredes, M. Mora et al., “Characterization of the first report of Mycobacterium timonense infecting an HIV patient in an Ecuadorian hospital,” Clinical Microbiology and Infection, vol. 20, no. 12, pp. 1113–1116, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Ben Salah, C. Cayrou, D. Raoult, and M. Drancourt, “Mycobacterium marseillense sp. nov., Mycobacterium timonense sp. nov. and Mycobacterium bouchedurhonense sp. nov., members of the Mycobacterium avium complex,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 11, pp. 2803–2808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. C. Parrish, J. Myers, and A. Lazarus, “Nontuberculous mycobacterial pulmonary infections in non-HIV patients,” Postgraduate Medicine, vol. 120, no. 4, pp. 78–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. E. Crow, C. T. King, C. E. Smith, R. F. Corpe, and I. Stergus, “A limited clinical, pathologic, and epidemiologic study of patients,” American Review of Tuberculosis, vol. 75, no. 2, pp. 199–222, 1957. View at Google Scholar · View at Scopus
  33. D. Y. Rosenzweig, “Pulmonary mycobacterial infections due to Mycobacterium intracellulare-avium complex: clinical features and course in 100 consecutive cases,” Chest, vol. 75, no. 2, pp. 115–119, 1979. View at Publisher · View at Google Scholar · View at Scopus
  34. E. E. Christensen, G. W. Dietz, C. H. Ahn et al., “Pulmonary manifestations of Mycobacterium intracellularis,” American Journal of Roentgenology, vol. 133, no. 1, pp. 59–66, 1979. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Asakura, M. Ishii, M. Haraguchi et al., “Dry pleurisy complicating solitary pulmonary nodules caused by Mycobacterium avium: a case report,” Journal of Medical Case Reports, vol. 9, no. 1, article 238, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. H. J. Yoon, M. J. Chung, K. S. Lee, J. S. Kim, H. Y. Park, and W. J. Koh, “Broncho-pleural fistula with hydropneumothorax at CT: diagnostic implications in Mycobacterium avium complex lung disease with pleural involvement,” Korean Journal of Radiology, vol. 17, no. 2, pp. 295–301, 2016. View at Publisher · View at Google Scholar
  37. A. Waness, “Rare cavitary MAC lung disease causing a serious broncho-pleural air leak in an immune competent patient,” Journal of Medical Cases, vol. 4, no. 12, pp. 825–827, 2013. View at Publisher · View at Google Scholar
  38. J. Embil, P. Warren, M. Yakrus et al., “Pulmonary illness associated with exposure to Mycobacterium-avium complex in hot tub water: Hypersensitivity pneumonitis or infection?” Chest, vol. 111, no. 3, pp. 813–816, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Agarwal and A. Nath, “Hot-tub lung: hypersensitivity to Mycobacterium avium but not hypersensitivity pneumonitis,” Respiratory Medicine, vol. 100, no. 8, p. 1478, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Sood, R. Sreedhar, P. Kulkarni, and A. R. Nawoor, “Hypersensitivity pneumonitis-like granulomatous lung disease with nontuberculous mycobacteria from exposure to hot water aerosols,” Environmental Health Perspectives, vol. 115, no. 2, pp. 262–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Rosal-Sanchez, J. Alvarez, M. J. Torres, C. Mayorga, J. Pérez, and M. Blanca, “Pigeon Fancier's Lung after low exposure,” Allergy, vol. 57, no. 7, p. 649, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. D. Lawn, T. A. Bicanic, and D. C. Macallan, “Pyomyositis and cutaneous abscesses due to Mycobacterium avium: an immune reconstitution manifestation in a patient with AIDS,” Clinical Infectious Diseases, vol. 38, no. 3, pp. 461–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Tandon, K. S. Kim, and R. Serrao, “Disseminated Mycobacterium avium-intracellulare infection in a person with AIDS with cutaneous and CNS lesions,” AIDS Reader, vol. 17, no. 11, pp. 555–560, 2007. View at Google Scholar · View at Scopus
  44. T. Shiomi, T. Yamamoto, and T. Manabe, “Mycobacterial spindle cell pseudotumor of the skin,” Journal of Cutaneous Pathology, vol. 34, no. 4, pp. 346–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. T. P. Primm, C. A. Lucero, and J. O. Falkinham III, “Health impacts of environmental mycobacteria,” Clinical Microbiology Reviews, vol. 17, no. 1, pp. 98–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Hazra, C. D. Robson, A. R. Perez-Atayde, and R. N. Husson, “Lymphadenitis due to nontuberculous mycobacteria in children: Presentation and response to therapy,” Clinical Infectious Diseases, vol. 28, no. 1, pp. 123–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Lindeboom, E. J. Kuijper, E. S. B. Van Coppenraet, R. Lindeboom, and J. M. Prins, “Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: a multicenter, randomized, controlled trial,” Clinical Infectious Diseases, vol. 44, no. 8, pp. 1057–1064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Trnka, D. Daňková, and E. Švandová, “Six years' experience with the discontinuation of BCG vaccination: 4. Protective effect of BCG vaccination against the Mycobacterium avium intracellulare complex,” Tubercle and Lung Disease, vol. 75, no. 5, pp. 348–352, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Romanus, H. O. Hallander, P. Wåhlén, A. M. Olinder-Nielsen, P. H. W. Magnusson, and I. Juhlin, “Atypical mycobacteria in extrapulmonary disease among children. Incidence in Sweden from 1969 to 1990, related to changing BCG-vaccination coverage,” Tubercle and Lung Disease, vol. 76, no. 4, pp. 300–310, 1995. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Thegerström, V. Romanus, V. Friman, L. Brudin, P. D. Haemig, and B. Olsen, “Mycobacterium avium lymphadenopathy among children, Sweden,” Emerging Infectious Diseases, vol. 14, no. 4, pp. 661–663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Vuorenmaa, I. B. Salah, V. Barlogis, H. Chambost, and M. Drancourt, “Mycobacterium colombiense and pseudotuberculous lymphadenopathy,” Emerging Infectious Diseases, vol. 15, no. 4, pp. 619–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Biet, M. L. Boschiroli, M. F. Thorel, and L. A. Guilloteau, “Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC),” Veterinary Research, vol. 36, no. 3, pp. 411–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Gona, R. B. Van Dyke, P. L. Williams et al., “Incidence of opportunistic and other infections in HIV-infected children in the HAART era,” The Journal of the American Medical Association, vol. 296, no. 3, pp. 292–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. S. K. Field and R. L. Cowie, “Lung disease due to the more common nontuberculous mycobacteria,” Chest, vol. 129, no. 6, pp. 1653–1672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Al-Muhsen and J.-L. Casanova, “The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases,” Journal of Allergy and Clinical Immunology, vol. 122, no. 6, pp. 1043–1051, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. C. E. Prasad, “Immunodeficiencies in diabetes and mycobacterial infections,” International Journal of Diabetes in Developing Countries, vol. 19, pp. 52–55, 1999. View at Google Scholar
  57. J. R. Honda, V. Knight, and E. D. Chan, “Pathogenesis and risk factors for nontuberculous mycobacterial lung disease,” Clinics in Chest Medicine, vol. 36, no. 1, pp. 1–11, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. C.-T. Huang, Y.-J. Tsai, H.-D. Wu et al., “Impact of non-tuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease,” The International Journal of Tuberculosis and Lung Disease, vol. 16, no. 4, pp. 539–545, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Qvist, M. Gilljam, B. Jönsson et al., “Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia,” Journal of Cystic Fibrosis, vol. 14, no. 1, pp. 46–52, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Vlahos and S. Bozinovski, “Role of alveolar macrophages in chronic obstructive pulmonary disease,” Frontiers in Immunology, vol. 5, article 435, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. R. N. Plotinsky, E. A. Talbot, and C. F. von Reyn, “Proposed definitions for epidemiologic and clinical studies of Mycobacterium avium complex pulmonary disease,” PLoS ONE, vol. 8, no. 11, Article ID e77385, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. V. M. Katoch, “Infections due to non-tuberculous mycobacteria (NTM),” Indian Journal of Medical Research, vol. 120, no. 4, pp. 290–304, 2004. View at Google Scholar · View at Scopus
  63. K. Mdluli, J. Swanson, E. Fischer, R. E. Lee, and C. E. Barry III, “Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium,” Molecular Microbiology, vol. 27, no. 6, pp. 1223–1233, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Rodrigues, D. Sampaio, I. Couto et al., “The role of efflux pumps in macrolide resistance in Mycobacterium avium complex,” International Journal of Antimicrobial Agents, vol. 34, no. 6, pp. 529–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. D. E. Griffith, B. A. Brown-Elliott, B. Langsjoen et al., “Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 8, pp. 928–934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. C. A. Benson, P. L. Williams, J. S. Currier et al., “A prospective, randomized trial examining the efficacy and safety of clarithromycin in combination with ethambutol, rifabutin, or both for the treatment of disseminated Mycobacterium avium complex disease in persons with acquired immunodeficiency syndrome,” Clinical Infectious Diseases, vol. 37, no. 9, pp. 1234–1243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. S. H. Kasperbauer and C. L. Daley, “Diagnosis and treatment of infections due to Mycobacterium avium complex,” Seminars in Respiratory and Critical Care Medicine, vol. 29, no. 5, pp. 569–576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. J. E. Kaplan, C. Benson, K. K. Holmes, J. T. Brooks, A. Pau, and H. Masur, “Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America,” Morbidity and Mortality Weekly Report, vol. 58, no. 4, pp. 1–198, 2009. View at Google Scholar
  69. J. A. Lindeboom, E. J. Kuijper, E. S. B. van Coppenraet, R. Lindeboom, and J. M. Prins, “Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: a multicenter, randomized, controlled trial,” Clinical Infectious Diseases, vol. 44, no. 8, pp. 1057–1064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Fournier, A. M. Burguière, A. Flahault, V. Vincent, M. P. Treilhou, and M. Eliaszewicz, “Effect of adding clofazimine to combined clarithromycin-ethambutol therapy for Mycobacterium avium complex septicemia in AIDS patients,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 18, no. 1, pp. 16–22, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. J. E. Shitaye, L. Matlova, A. Horvathova et al., “Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods,” Veterinary Microbiology, vol. 127, no. 1-2, pp. 155–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Gerlach, “Mycobacterium,” in Avian Medicine: Principles and Application, B. W. Ritchie, G. J. Harrison, and L. R. Harrison, Eds., pp. 971–975, Wingers, Lake Worth, Fla, USA, 1994. View at Google Scholar
  73. M. F. Thorel, H. Huchzermeyer, R. Weiss, and J. J. Fontaine, “Mycobacterium avium infections in animals,” Veterinary Research, vol. 28, no. 5, pp. 439–447, 1997. View at Google Scholar · View at Scopus
  74. M. F. Thorel, H. F. Huchzermeyer, and A. L. Michel, “Mycobacterium avium and Mycobacterium intracellulare infection in mammals,” Revue Scientifique et Technique, vol. 20, pp. 204–218, 2001. View at Google Scholar
  75. M. Ocepek, M. Pate, M. Zolnir-Dovc, and Z. Cvetnic, “Tuberculosis in cattle caused by IS901+ Mycobacterium avium subsp. avium—a case report,” Veterinarni Medicina, vol. 48, no. 1-2, pp. 47–50, 2003. View at Google Scholar · View at Scopus
  76. V. Haist, F. Seehusen, I. Moser et al., “Mycobacterium avium subsp. hominissuis infection in 2 pet dogs, Germany,” Emerging Infectious Diseases, vol. 14, no. 6, pp. 988–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Matlova, L. Dvorska, J. Bartl et al., “Mycobacteria isolated from the environment of pig farms in the Czech Republic during the years 1996 to 2002,” Veterinarni Medicina, vol. 48, no. 12, pp. 343–357, 2003. View at Google Scholar · View at Scopus
  78. W. Glawischnig, T. Steineck, and J. Spergser, “Infections caused by Mycobacterium avium subspecies avium, Hominissuis, and paratuberculosis in free-ranging red deer (Cervus elaphus hippelaphus) in Austria, 2001–2004,” Journal of Wildlife Diseases, vol. 42, no. 4, pp. 724–731, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Pate, M. Moravkova, B. Krt, I. Pavlik, and M. Ocepek, “Genotyping of Mycobacterium avium subsp. avium isolates from domestic animals in Slovenia by IS901 RFLP,” Veterinarni Medicina, vol. 54, no. 6, pp. 270–279, 2009. View at Google Scholar · View at Scopus
  80. K. Hejlícek and F. Treml, “Comparison of the pathogenesis and epizootiologic importance of avian mycobacteriosis in various types of domestic and free-living syntropic birds,” Veterinarni Medicina, vol. 40, no. 6, pp. 187–194, 1995. View at Google Scholar · View at Scopus
  81. M. Skoric, E. J. Shitaye, R. Halouzka et al., “Tuberculous and tuberculoid lesions in free living small terrestrial mammals and the risk of infection to humans and animals: a review,” Veterinarni Medicina, vol. 52, no. 4, pp. 144–161, 2007. View at Google Scholar · View at Scopus
  82. P. Kriz, P. Jahn, B. Bezdekova et al., “Mycobacterium avium subsp. hominissuis infection in horses,” Emerging Infectious Diseases, vol. 16, no. 8, pp. 1328–1329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. I. Pavlík, P. Jahn, L. Dvorska, M. Bartos, L. Novotny, and R. Halouzka, “Mycobacterial infections in horses: a review of the literature,” Veterinarni Medicina, vol. 49, no. 11, pp. 427–440, 2004. View at Google Scholar · View at Scopus
  84. C. O. Thoen, J. H. Steele, and M. J. Gilsdor, Eds., Mycobacterium bovis Infection in Animals and Humans, Blackwell Publishing, 2nd edition, 2006.
  85. L. Dvorska, T. J. Bull, M. Bartos et al., “A standardised restriction fragment length polymorphism (RFLP) method for typing Mycobacterium avium isolates links IS901 with virulence for birds,” Journal of Microbiological Methods, vol. 55, no. 1, pp. 11–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. J. L. Mendoza, R. Lana, and M. Díaz-Rubio, “Mycobacterium avium subspecies paratuberculosis and its relationship with Cronh's disease,” World Journal of Gastroenterology, vol. 15, no. 4, pp. 417–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Hasonova and I. Pavlik, “Economic impact of paratuberculosis in dairy cattle herds: a review,” Veterinarni Medicina, vol. 51, no. 5, pp. 193–211, 2006. View at Google Scholar · View at Scopus
  88. M. Barry, J. Taylor, and J. P. Woods, “Disseminated Mycobacterium avium infection in a cat,” Canadian Veterinary Journal, vol. 43, no. 5, pp. 369–371, 2002. View at Google Scholar · View at Scopus
  89. A. Griffin, A. L. Newton, L. R. Aronson, D. C. Brown, and R. S. Hess, “Disseminated Mycobacterium avium complex infection following renal transplantation in a cat,” Journal of the American Veterinary Medical Association, vol. 222, no. 8, pp. 1097–1101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. B. Horn, D. Forshaw, D. Cousins, and P. J. Irwin, “Disseminated Mycobacterium avium infection in a dog with chronic diarrhoea,” Australian Veterinary Journal, vol. 78, no. 5, pp. 320–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Machackova-Kopecna, M. Bartos, M. Straka et al., “Paratuberculosis and avian tuberculosis infections in one red deer farm studied by IS900 and IS901 RFLP analysis,” Veterinary Microbiology, vol. 105, no. 3-4, pp. 261–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. J. O. Falkinham III, M. D. Iseman, P. de Haas, and D. van Soolingen, “Mycobacterium avium in a shower linked to pulmonary disease,” Journal of Water and Health, vol. 6, no. 2, pp. 209–213, 2008. View at Google Scholar · View at Scopus
  93. V. Thomas and G. McDonnell, “Relationship between mycobacteria and amoebae: ecological and epidemiological concerns,” Letters in Applied Microbiology, vol. 45, no. 4, pp. 349–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. I. Pagnier, D. Raoult, and B. La Scola, “Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure,” Environmental Microbiology, vol. 10, no. 5, pp. 1135–1144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Kubin, B. Burianova, L. Mezensky, M. Slosarek, and M. Turzova, “Diagnostics of mycobacterial infections,” in Microbiological Axamination Methods, J. Schindle, B. Tichacek, and V. Potuznik, Eds., vol. 3, pp. 32–42, Avicenum, Prague, Czech Republic, 1st edition, 1986. View at Google Scholar
  96. OIE, Avian tuberculosis 2010, 2010, http://www.oie.int/en/international-standard-setting/terrestrial-manual/access-online.
  97. L. A. Reddacliff, I. B. Marsh, S. A. Fell, S. L. Austin, and R. J. Whittington, “Isolation of Mycobacterium avium subspecies paratuberculosis from muscle and peripheral lymph nodes using acid-pepsin digest prior to BACTEC culture,” Veterinary Microbiology, vol. 145, no. 1-2, pp. 122–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. V. J. Timms, M. M. Gehringer, H. M. Mitchell, G. Daskalopoulos, and B. A. Neilan, “How accurately can we detect Mycobacterium avium subsp. paratuberculosis infection?” Journal of Microbiological Methods, vol. 85, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Balážová, J. Makovcová, O. Šedo, M. Slaný, M. Faldyna, and Z. Zdráhal, “The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling,” FEMS Microbiology Letters, vol. 353, no. 1, pp. 77–84, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Hofmann-Thiel, L. Turaev, T. Alnour, L. Drath, M. Müllerova, and H. Hoffmann, “Multi-centre evaluation of the speed-oligo Mycobacteria assay for differentiation of Mycobacterium spp. in clinical isolates,” BMC Infectious Diseases, vol. 11, article 353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Slany and I. Pavlik, “Molecular detection of nontuberculous mycobacteria: advantages and limits of a broad-range sequencing approach,” Journal of Molecular Microbiology and Biotechnology, vol. 22, no. 4, pp. 268–276, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Rantakokko-Jalava, S. Nikkari, J. Jalava et al., “Direct amplification of rRNA genes in diagnosis of bacterial infections,” Journal of Clinical Microbiology, vol. 38, no. 1, pp. 32–39, 2000. View at Google Scholar · View at Scopus
  103. C. Guerrero, C. Bernasconi, D. Burki, T. Bodmer, and A. Telenti, “A novel insertion element from Mycobacterium avium, IS1245, is a specific target for analysis of strain relatedness,” Journal of Clinical Microbiology, vol. 33, no. 2, pp. 304–307, 1995. View at Google Scholar · View at Scopus
  104. M. Bartos, P. Hlozek, P. Svastova et al., “Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards,” Journal of Microbiological Methods, vol. 64, no. 3, pp. 333–345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. I. Slana, P. Kralik, A. Kralova, and I. Pavlik, “On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination,” International Journal of Food Microbiology, vol. 128, no. 2, pp. 250–257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Dvorska, M. Bartos, O. Ostadal, J. Kaustova, L. Matlova, and I. Pavlik, “IS1311 and IS1245 restriction fragment length polymorphism analyses, serotypes, and drug susceptibilities of Mycobacterium avium complex isolates obtained from a human immunodeficiency virus-negative patient,” Journal of Clinical Microbiology, vol. 40, no. 10, pp. 3712–3719, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Moravkova, J. Lamka, M. Slany, and I. Pavlik, “Genetic IS901 RFLP diversity among Mycobacterium avium subsp. avium isolates from four pheasant flocks,” Journal of Veterinary Science, vol. 14, no. 1, pp. 99–102, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. V. C. Thibault, M. Grayon, M. L. Boschiroli et al., “New variable-number tandem-repeat markers for typing Mycobacterium avium subsp. paratuberculosis and M. avium strains: comparison with IS900 and IS1245 restriction fragment length polymorphism typing,” Journal of Clinical Microbiology, vol. 45, no. 8, pp. 2404–2410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. J. W. Wynne, T. Seemann, D. M. Bulach, S. A. Coutts, A. M. Talaat, and W. P. Michalski, “Resequencing the Mycobacterium avium subsp. paratuberculosis K10 genome: improved annotation and revised genome sequence,” Journal of Bacteriology, vol. 192, no. 23, pp. 6319–6320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. J. L. Gardy, J. C. Johnston, S. J. Ho Sui et al., “Whole-genome sequencing and social-network analysis of a tuberculosis outbreak,” The New England Journal of Medicine, vol. 364, no. 8, pp. 730–739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Kato-Maeda, J. Z. Metcalfe, and L. Flores, “Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies,” Journal of Future Microbiology, vol. 6, no. 2, pp. 203–216, 2011. View at Publisher · View at Google Scholar · View at Scopus