Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 5067853, 5 pages
http://dx.doi.org/10.1155/2016/5067853
Research Article

An In Vivo Confocal Microscopic Study of Corneal Nerve Morphology in Unilateral Keratoconus

1Narayana Nethralaya Eye Hospital, Bangalore 560010, India
2Academic Hospital, Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands

Received 12 November 2015; Accepted 6 January 2016

Academic Editor: Dipika V. Patel

Copyright © 2016 Natasha Kishore Pahuja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Krachmer, R. S. Feder, and M. W. Belin, “Keratoconus and related noninflammatory corneal thinning disorders,” Survey of Ophthalmology, vol. 28, no. 4, pp. 293–322, 1984. View at Publisher · View at Google Scholar · View at Scopus
  2. G. H. Bae, J. R. Kim, C. H. Kim, D. H. Lim, E. S. Chung, and T.-Y. Chung, “Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using pentacam,” American Journal of Ophthalmology, vol. 157, no. 1, pp. 103–109.e1, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. R. H. Kennedy, W. M. Bourne, and J. A. Dyer, “A 48-year clinical and epidemiologic study of keratoconus,” American Journal of Ophthalmology, vol. 101, no. 3, pp. 267–273, 1986. View at Publisher · View at Google Scholar · View at Scopus
  4. D. R. Holland, N. Maeda, S. B. Hannush et al., “Unilateral keratoconus. Incidence and quantitative topographic analysis,” Ophthalmology, vol. 104, no. 9, pp. 1409–1413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Li, Y. S. Rabinowitz, K. Rasheed, and H. Yang, “Longitudinal study of the normal eyes in unilateral keratoconus patients,” Ophthalmology, vol. 111, no. 3, pp. 440–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” Journal of Cataract and Refractive Surgery, vol. 34, no. 5, pp. 796–801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Wittig-Silva, M. Whiting, E. Lamoureux, R. G. Lindsay, L. J. Sullivan, and G. R. Snibson, “A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results,” Journal of Refractive Surgery, vol. 24, no. 7, pp. S720–S725, 2008. View at Google Scholar · View at Scopus
  8. R. Shetty, L. Kaweri, N. Pahuja et al., “Current review and a simplified ‘five-point management algorithm’ for keratoconus,” Indian Journal of Ophthalmology, vol. 63, no. 1, pp. 46–53, 2015. View at Publisher · View at Google Scholar
  9. G. Bitirgen, A. Ozkagnici, B. Bozkurt, and R. A. Malik, “In vivo corneal confocal microscopic analysis in patients with keratoconus,” International Journal of Ophthalmology, vol. 8, no. 3, pp. 534–539, 2015. View at Publisher · View at Google Scholar
  10. R. L. Niederer, D. Perumal, T. Sherwin, and C. N. J. McGhee, “Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea,” Investigative Ophthalmology and Visual Science, vol. 49, no. 7, pp. 2964–2970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. S. Shaheen, M. Bakir, and S. Jain, “Corneal nerves in health and disease,” Survey of Ophthalmology, vol. 59, no. 3, pp. 263–285, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. L. J. Müller, G. F. J. M. Vrensen, L. Pels, B. N. Cardozo, and B. Willekens, “Architecture of human corneal nerves,” Investigative Ophthalmology and Visual Science, vol. 38, no. 5, pp. 985–994, 1997. View at Google Scholar · View at Scopus
  13. C. W. Morgan, I. Nadelhaft, and W. C. de Groat, “Anatomical localization of corneal afferent cells in the trigeminal ganglion,” Neurosurgery, vol. 2, no. 3, pp. 252–258, 1978. View at Publisher · View at Google Scholar · View at Scopus
  14. D. V. Patel and C. N. J. McGhee, “Mapping of the normal human corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy,” Investigative Ophthalmology & Visual Science, vol. 46, no. 12, pp. 4485–4488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Mathew, J. D. Goosey, and J. P. G. Bergmanson, “Quantified histopathology of the keratoconic cornea,” Optometry and Vision Science, vol. 88, no. 8, pp. 988–997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. V. Patel and C. N. J. McGhee, “In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review,” British Journal of Ophthalmology, vol. 93, no. 7, pp. 853–860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Shetty, R. M. M. A. Nuijts, M. Nicholson et al., “Cone location–dependent outcomes after combined topography-guided photorefractive keratectomy and collagen cross-linking,” American Journal of Ophthalmology, vol. 159, no. 3, pp. 419–425, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Shetty, S. D'Souza, S. Srivastava, and R. Ashwini, “Topography-guided custom ablation treatment for treatment of keratoconus,” Indian Journal of Ophthalmology, vol. 61, no. 8, pp. 445–450, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Abou Shousha, V. L. Perez, A. P. Fraga Santini Canto et al., “The use of Bowman's layer vertical topographic thickness map in the diagnosis of keratoconus,” Ophthalmology, vol. 121, no. 5, pp. 988–993, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Sykakis, F. Carley, L. Irion, J. Denton, and M. C. Hillarby, “An in depth analysis of histopathological characteristics found in keratoconus,” Pathology, vol. 44, no. 3, pp. 234–239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sawaguchi, T. Fukuchi, H. Abe, T. Kaiya, J. Sugar, and B. V. J. T. Yue, “Three-dimensional scanning electron microscopic study of keratoconus corneas,” Archives of Ophthalmology, vol. 116, no. 1, pp. 62–68, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. D. V. Patel and C. N. J. McGhee, “Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review,” Clinical and Experimental Ophthalmology, vol. 35, no. 1, pp. 71–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. R. Porzukowiak and K. Ly, “In vivo confocal microscopy use in endotheliitis,” Optometry and Vision Science, vol. 92, no. 12, pp. e431–e436, 2015. View at Google Scholar
  24. D. N. Parmar, S. T. Awwad, W. M. Petroll, R. W. Bowman, J. P. McCulley, and H. D. Cavanagh, “Tandem scanning confocal corneal microscopy in the diagnosis of suspected acanthamoeba keratitis,” Ophthalmology, vol. 113, no. 4, pp. 538–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Brasnu, T. Bourcier, B. Dupas et al., “In vivo confocal microscopy in fungal keratitis,” British Journal of Ophthalmology, vol. 91, no. 5, pp. 588–591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Kheirkhah, R. R. Darabad, A. Cruzat et al., “Corneal epithelial immune dendritic cell alterations in subtypes of dry eye disease: a pilot in vivo confocal microscopic study,” Investigative Opthalmology & Visual Science, vol. 56, no. 12, pp. 7179–7185, 2015. View at Publisher · View at Google Scholar
  27. K. I. Kinard, A. G. Smith, J. R. Singleton et al., “Chronic migraine is associated with reduced corneal nerve fiber density and symptoms of dry eye,” Headache, vol. 55, no. 4, pp. 543–549, 2015. View at Publisher · View at Google Scholar
  28. R. A. Malik, P. Kallinikos, C. A. Abbott et al., “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia, vol. 46, no. 5, pp. 683–688, 2003. View at Google Scholar · View at Scopus
  29. N. Efron and J. G. Hollingsworth, “New perspectives on keratoconus as revealed by corneal confocal microscopy,” Clinical and Experimental Optometry, vol. 91, no. 1, pp. 34–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Ö. Ö. Uçakhan, A. Kanpolat, N. Ylmaz, and M. Özkan, “In vivo confocal microscopy findings in keratoconus,” Eye and Contact Lens, vol. 32, no. 4, pp. 183–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. H. Weed, C. J. MacEwen, A. Cox, and C. N. J. McGhee, “Quantitative analysis of corneal microstructure in keratoconus utilising in vivo confocal microscopy,” Eye, vol. 21, no. 5, pp. 614–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. S. Mannion, C. Tromans, and C. O'Donnell, “An evaluation of corneal nerve morphology and function in moderate keratoconus,” Contact Lens and Anterior Eye, vol. 28, no. 4, pp. 185–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Dienes, H. J. Kiss, K. Perényi et al., “Corneal sensitivity and dry eye symptoms in patients with keratoconus,” PLoS ONE, vol. 10, no. 10, Article ID e0141621, 2015. View at Publisher · View at Google Scholar
  34. M. A. Dabbah, J. Graham, I. N. Petropoulos, M. Tavakoli, and R. A. Malik, “Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging,” Medical Image Analysis, vol. 15, no. 5, pp. 738–747, 2011. View at Publisher · View at Google Scholar · View at Scopus