Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 5068127, 8 pages
http://dx.doi.org/10.1155/2016/5068127
Clinical Study

tDCS and Robotics on Upper Limb Stroke Rehabilitation: Effect Modification by Stroke Duration and Type of Stroke

1Neuroscience and Rehabilitation Department, Ferrara University Hospital, 44100 Ferrara, Italy
2Center of Neuromodulation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02129, USA
3School of Physiotherapy, University of Ferrara, 44100 Ferrara, Italy

Received 23 October 2015; Revised 18 January 2016; Accepted 6 March 2016

Academic Editor: Juan C. Moreno

Copyright © 2016 Sofia Straudi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Wade, R. Langton-Hewer, V. A. Wood, C. E. Skilbeck, and H. M. Ismail, “The hemiplegic arm after stroke: measurement and recovery,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 46, no. 6, pp. 521–524, 1983. View at Publisher · View at Google Scholar · View at Scopus
  2. D. T. Wade and R. L. Hewer, “Functional abilities after stroke: measurement, natural history and prognosis,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 50, no. 2, pp. 177–182, 1987. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Kwakkel, “Impact of intensity of practice after stroke: issues for consideration,” Disability and Rehabilitation, vol. 28, no. 13-14, pp. 823–830, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Blennerhassett and W. Dite, “Additional task-related practice improves mobility and upper limb function early after stroke: a randomised controlled trial,” Australian Journal of Physiotherapy, vol. 50, no. 4, pp. 219–224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. D. Takahashi, L. Der-Yeghiaian, V. Le, R. R. Motiwala, and S. C. Cramer, “Robot-based hand motor therapy after stroke,” Brain, vol. 131, no. 2, pp. 425–437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. E. Fasoli, H. I. Krebs, J. Stein, W. R. Frontera, and N. Hogan, “Effects of robotic therapy on motor impairment and recovery in chronic stroke,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 4, pp. 477–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. C. Lo, P. D. Guarino, L. G. Richards et al., “Robot-assisted therapy for long-term upper-limb impairment after stroke,” The New England Journal of Medicine, vol. 362, no. 19, pp. 1772–1783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Bovolenta, M. Goldoni, P. Clerici, M. Agosti, and M. Franceschini, “Robot therapy for functional recovery of the upper limbs: a pilot study on patients after stroke,” Journal of Rehabilitation Medicine, vol. 41, no. 12, pp. 971–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Veerbeek, E. van Wegen, R. van Peppen et al., “What is the evidence for physical therapy poststroke? A systematic review and meta-analysis,” PLoS ONE, vol. 9, no. 2, Article ID e87987, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. Reinkensmeyer, “Robotic assistance for upper extremity training after stroke,” Studies in Health Technology and Informatics, vol. 145, pp. 25–39, 2009. View at Google Scholar
  11. F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?” The Lancet Neurology, vol. 5, no. 8, pp. 708–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Nitsche, A. Seeber, K. Frommann et al., “Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex,” The Journal of Physiology, vol. 568, no. 1, pp. 291–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” The Journal of Physiology, vol. 527, no. 3, pp. 633–639, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Hummel, P. Celnik, P. Giraux et al., “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain, vol. 128, no. 3, pp. 490–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Murase, J. Duque, R. Mazzocchio, and L. G. Cohen, “Influence of interhemispheric interactions on motor function in chronic stroke,” Annals of Neurology, vol. 55, no. 3, pp. 400–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Schlaug, V. Renga, and D. Nair, “Transcranial direct current stimulation in stroke recovery,” Archives of Neurology, vol. 65, no. 12, pp. 1571–1576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Fregni, P. S. Boggio, C. G. Mansur et al., “Transcranial direct current stimulation of the unaffected hemisphere in stroke patients,” NeuroReport, vol. 16, no. 14, pp. 1551–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Lindenberg, V. Renga, L. L. Zhu, D. Nair, and G. Schlaug, “Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients,” Neurology, vol. 75, no. 24, pp. 2176–2184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Reis and B. Fritsch, “Modulation of motor performance and motor learning by transcranial direct current stimulation,” Current Opinion in Neurology, vol. 24, no. 6, pp. 590–596, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Y. Chhatbar, V. Ramakrishnan, S. Kautz, M. S. George, R. J. Adams, and W. Feng, “Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose-response relationship,” Brain Stimulation, vol. 9, no. 1, pp. 16–26, 2016. View at Publisher · View at Google Scholar
  21. N. Kang, J. J. Summers, and J. H. Cauraugh, “Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis,” Journal of Neurology, Neurosurgery & Psychiatry, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Marquez, P. van Vliet, P. Mcelduff, J. Lagopoulos, and M. Parsons, “Transcranial direct current stimulation (tDCS): does it have merit in stroke rehabilitation? A systematic review,” International Journal of Stroke, vol. 10, no. 3, pp. 306–316, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Tedesco Triccas, J. H. Burridge, A. M. Hughes et al., “Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis,” Clinical Neurophysiology, vol. 127, no. 1, pp. 946–955, 2016. View at Publisher · View at Google Scholar
  24. B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” The Cochrane Database of Systematic Reviews, vol. 11, Article ID CD009645, 2013. View at Google Scholar · View at Scopus
  25. D. J. Edwards, H. I. Krebs, A. Rykman et al., “Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke,” Restorative Neurology and Neuroscience, vol. 27, no. 3, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M.-S. Rioult-Pedotti, D. Friedman, and J. P. Donoghue, “Learning-induced LTP in neocortex,” Science, vol. 290, no. 5491, pp. 533–536, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Collin and D. Wade, “Assessing motor impairment after stroke: a pilot reliability study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 53, no. 7, pp. 576–579, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Williams, A. Pascual-Leone, and F. Fregni, “Interhemispheric modulation induced by cortical stimulation and motor training,” Physical Therapy, vol. 90, no. 3, pp. 398–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clinical Neurophysiology, vol. 117, no. 4, pp. 845–850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Brunoni, P. Schestatsky, P. A. Lotufo, I. M. Benseñor, and F. Fregni, “Comparison of blinding effectiveness between sham tDCS and placebo sertraline in a 6-week major depression randomized clinical trial,” Clinical Neurophysiology, vol. 125, no. 2, pp. 298–305, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. A. R. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, and S. Steglind, “The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance,” Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13–31, 1975. View at Google Scholar
  32. Y.-W. Hsieh, C.-Y. Wu, K.-C. Lin, Y.-F. Chang, C.-L. Chen, and J.-S. Liu, “Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation,” Stroke, vol. 40, no. 4, pp. 1386–1391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H.-M. Chen, C. C. Chen, I.-P. Hsueh, S.-L. Huang, and C.-L. Hsieh, “Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke,” Neurorehabilitation and Neural Repair, vol. 23, no. 5, pp. 435–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Uswatte, E. Taub, D. Morris, M. Vignolo, and K. McCulloch, “Reliability and validity of the upper-extremity motor activity log-14 for measuring real-world arm use,” Stroke, vol. 36, no. 11, pp. 2493–2496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. D. Riley, V. Le, L. Der-Yeghiaian et al., “Anatomy of stroke injury predicts gains from therapy,” Stroke, vol. 42, no. 2, pp. 421–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Page, L. V. Gauthier, and S. White, “Size doesn't matter: cortical stroke lesion volume is not associated with upper extremity motor impairment and function in mild, chronic hemiparesis,” Archives of Physical Medicine and Rehabilitation, vol. 94, no. 5, pp. 817–821, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Hesse, A. Waldner, J. Mehrholz, C. Tomelleri, M. Pohl, and C. Werner, “Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 838–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M.-H. Milot, S. J. Spencer, V. Chan et al., “Corticospinal excitability as a predictor of functional gains at the affected upper limb following robotic training in chronic stroke survivors,” Neurorehabilitation and Neural Repair, vol. 28, no. 9, pp. 819–827, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Ochi, S. Saeki, T. Oda, Y. Matsushima, and K. Hachisuka, “Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients,” Journal of Rehabilitation Medicine, vol. 45, no. 2, pp. 137–140, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Wu, L. Qian, R. D. Zorowitz, L. Zhang, Y. Qu, and Y. Yuan, “Effects on decreasing upper-limb poststroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study,” Archives of Physical Medicine and Rehabilitation, vol. 94, no. 1, pp. 1–8, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. J. O'Shea, M.-H. Boudrias, C. J. Stagg et al., “Predicting behavioural response to TDCS in chronic motor stroke,” NeuroImage, vol. 85, part 3, pp. 924–933, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. L. V. Bradnam, C. M. Stinear, P. A. Barber, and W. D. Byblow, “Contralesional hemisphere control of the proximal paretic upper limb following stroke,” Cerebral Cortex, vol. 22, no. 11, pp. 2662–2671, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Yao, J. Drogos, F. Veltink et al., “The effect of transcranial direct current stimulation on the expression of the flexor synergy in the paretic arm in chronic stroke is dependent on shoulder abduction loading,” Frontiers in Human Neuroscience, vol. 9, article 262, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Jaillard, C. D. Martin, K. Garambois, J. François Lebas, and M. Hommel, “Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study,” Brain, vol. 128, no. 5, pp. 1122–1138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Calautti and J.-C. Baron, “Functional neuroimaging studies of motor recovery after stroke in adults: a review,” Stroke, vol. 34, no. 6, pp. 1553–1566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. C. M. Stinear, W. D. Byblow, and S. H. Ward, “An update on predicting motor recovery after stroke,” Annals of Physical and Rehabilitation Medicine, vol. 57, no. 8, pp. 489–498, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. J. L. Chen and G. Schlaug, “Resting state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke,” Frontiers in Neurology, vol. 4, article 178, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Favre, T. A. Zeffiro, O. Detante, A. Krainik, M. Hommel, and A. Jaillard, “Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis,” Stroke, vol. 45, no. 4, pp. 1077–1083, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Di Pino, G. Pellegrino, G. Assenza et al., “Modulation of brain plasticity in stroke: a novel model for neurorehabilitation,” Nature Reviews Neurology, vol. 10, no. 10, pp. 597–608, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Bolognini, G. Vallar, C. Casati et al., “Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 819–829, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. V. Di Lazzaro, M. Dileone, F. Capone et al., “Immediate and late modulation of interhemipheric imbalance with bilateral transcranial direct current stimulation in acute stroke,” Brain Stimulation, vol. 7, no. 6, pp. 841–848, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Rossi, F. Sallustio, S. Di Legge, P. Stanzione, and G. Koch, “Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients,” European Journal of Neurology, vol. 20, no. 1, pp. 202–204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Fusco, F. Assenza, M. Iosa et al., “The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial,” BioMed Research International, vol. 2014, Article ID 547290, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Nishibe, E. T. R. Urban, S. Barbay, and R. J. Nudo, “Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model,” Neurorehabilitation and Neural Repair, vol. 29, no. 5, pp. 472–482, 2015. View at Publisher · View at Google Scholar · View at Scopus
  55. B. O. Adeyemo, M. Simis, D. D. Macea, and F. Fregni, “Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke,” Frontiers in Psychiatry, vol. 3, article 88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Poreisz, K. Boros, A. Antal, and W. Paulus, “Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients,” Brain Research Bulletin, vol. 72, no. 4–6, pp. 208–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Giacobbe, H. I. Krebs, B. T. Volpe et al., “Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing,” NeuroRehabilitation, vol. 33, no. 1, pp. 49–56, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. M. E. Cabral, A. Baltar, R. Borba et al., “Transcranial direct current stimulation: before, during, or after motor training?” NeuroReport, vol. 26, no. 11, pp. 618–622, 2015. View at Publisher · View at Google Scholar · View at Scopus
  59. Y.-W. Hsieh, K.-C. Lin, C.-Y. Wu et al., “Predicting clinically significant changes in motor and functional outcomes after robot-assisted stroke rehabilitation,” Archives of Physical Medicine and Rehabilitation, vol. 95, no. 2, pp. 316–321, 2014. View at Publisher · View at Google Scholar
  60. V. Klamroth-Marganska, J. Blanco, K. Campen et al., “Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial,” The Lancet Neurology, vol. 13, no. 2, pp. 159–166, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. R. G. Carson and N. C. Kennedy, “Modulation of human corticospinal excitability by paired associative stimulation,” Frontiers in Human Neuroscience, vol. 7, article 823, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Mrachacz-Kersting, N. Jiang, A. J. Stevenson et al., “Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface,” Journal of Neurophysiology, vol. 115, no. 3, pp. 1410–1421, 2016. View at Publisher · View at Google Scholar
  63. R. Xu, N. Jiang, N. Mrachacz-Kersting et al., “A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 7, pp. 2092–2101, 2014. View at Publisher · View at Google Scholar · View at Scopus