Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 6504593, 12 pages
http://dx.doi.org/10.1155/2016/6504593
Review Article

MicroRNAs: Novel Crossroads between Myeloma Cells and the Bone Marrow Microenvironment

1Laboratory of Tissue Engineering-Innovative Technology Platforms for Tissue Engineering (PON01_01059), Rizzoli Orthopedic Institute, 90100 Palermo, Italy
2Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
3Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, 40136 Bologna, Italy
4Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA

Received 25 September 2015; Accepted 1 December 2015

Academic Editor: Gang Liu

Copyright © 2016 Lavinia Raimondi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Bianchi and K. C. Anderson, “Understanding biology to tackle the disease: multiple myeloma from bench to bedside, and back,” CA—A Cancer Journal for Clinicians, vol. 64, no. 6, pp. 423–444, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Allart-Vorelli, B. Porro, F. Baguet, A. Michel, and F. Cousson-Gélie, “Haematological cancer and quality of life: a systematic literature review,” Blood Cancer Journal, vol. 5, no. 4, article e305, 2015. View at Publisher · View at Google Scholar
  3. P. Tassone, P. Neri, R. Burger et al., “Mouse models as a translational platform for the development of new therapeutic agents in multiple myeloma,” Current Cancer Drug Targets, vol. 12, no. 7, pp. 814–822, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. K. Kumar, S. V. Rajkumar, A. Dispenzieri et al., “Improved survival in multiple myeloma and the impact of novel therapies,” Blood, vol. 111, no. 5, pp. 2516–2520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Cottini and K. Anderson, “Novel therapeutic targets in multiple myeloma,” Clinical Advances in Hematology & Oncology, vol. 13, no. 4, pp. 236–248, 2015. View at Google Scholar
  6. T. Hideshima, C. Mitsiades, G. Tonon, P. G. Richardson, and K. C. Anderson, “Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets,” Nature Reviews Cancer, vol. 7, no. 8, pp. 585–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. I. M. Ghobrial, “Myeloma as a model for the process of metastasis: implications for therapy,” Blood, vol. 120, no. 1, pp. 20–30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Tassone, P. Tagliaferri, M. T. Fulciniti, M. T. Di Martino, and S. Venuta, “Novel therapeutic approaches based on the targeting of microenvironment-derived survival pathways in human cancer: experimental models and translational issues,” Current Pharmaceutical Design, vol. 13, no. 5, pp. 487–496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Tassone, P. Tagliaferri, M. Rossi et al., “Challenging the current approaches to multiple myeloma-related bone disease: from bisphosphonates to target therapy,” Current Cancer Drug Targets, vol. 9, no. 7, pp. 854–870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Botta, A. Gullà, P. Correale, P. Tagliaferri, and P. Tassone, “Myeloid derived suppressor cells in multiple myeloma: preclinical research and translational opportunities,” Frontiers in Oncology, vol. 4, article 348, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Rossi, C. Botta, P. Correale, P. Tassone, and P. Tagliaferri, “Immunologic microenvironment and personalized treatment in multiple myeloma,” Expert Opinion on Biological Therapy, vol. 13, supplement 1, pp. S83–S93, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. T. Di Martino, N. Amodio, P. Tassone, and P. Tagliaferri, Functional Analysis of MicroRNA in Multiple Myeloma, Methods in Molecular Biology, Humana Press, 2015.
  13. N. Amodio, M. T. Di Martino, A. Neri, P. Tagliaferri, and P. Tassone, “Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma,” Expert Opinion on Biological Therapy, vol. 13, supplement 1, pp. S125–S137, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Tagliaferri, M. Rossi, M. Di Martino et al., “Promises and challenges of microRNA-based treatment of multiple myeloma,” Current Cancer Drug Targets, vol. 12, no. 7, pp. 838–846, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Rossi, N. Amodio, M. T. Di Martino, D. Caracciolo, P. Tagliaferri, and P. Tassone, “From target therapy to miRNA therapeutics of human multiple myeloma: theoretical and technological issues in the evolving scenario,” Current Drug Targets, vol. 14, no. 10, pp. 1144–1149, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Rossi, N. Amodio, M. T. Di Martino, P. Tagliaferri, P. Tassone, and W. C. Cho, “MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches,” Current Pharmaceutical Biotechnology, vol. 15, no. 5, pp. 459–467, 2014. View at Publisher · View at Google Scholar
  17. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Denli, B. B. J. Tops, R. H. A. Plasterk, R. F. Ketting, and G. J. Hannon, “Processing of primary microRNAs by the Microprocessor complex,” Nature, vol. 432, no. 7014, pp. 231–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Eulalio, E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser, and E. Izaurralde, “Deadenylation is a widespread effect of miRNA regulation,” RNA, vol. 15, no. 1, pp. 21–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. W. Kong, D. Ferland-McCollough, T. J. Jackson, and M. Bushell, “MicroRNAs in cancer management,” The Lancet Oncology, vol. 13, no. 6, pp. e249–e258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Pichiorri, S.-S. Suh, M. Ladetto et al., “MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 12885–12890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Amodio, M. T. Di Martino, U. Foresta et al., “miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1,” Cell Death and Disease, vol. 3, article e436, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Morelli, E. Leone, M. E. Cantafio et al., “Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo,” Leukemia, vol. 29, no. 11, pp. 2173–2183, 2015. View at Publisher · View at Google Scholar
  24. L. Raimondi, N. Amodio, M. T. di Martino et al., “Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity,” Oncotarget, vol. 5, no. 10, pp. 3039–3054, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. M. T. Di Martino, E. Leone, N. Amodio et al., “Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence,” Clinical Cancer Research, vol. 18, no. 22, pp. 6260–6270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Scognamiglio, M. T. Di Martino, V. Campani et al., “Transferrin-conjugated SNALPs encapsulating 2′-O-methylated miR-34a for the treatment of multiple myeloma,” BioMed Research International, vol. 2014, Article ID 217365, 7 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Misso, M. T. Di Martino, G. De Rosa et al., “mir-34: a new weapon against cancer?” Molecular Therapy—Nucleic Acids, vol. 3, article e194, 2014. View at Publisher · View at Google Scholar
  28. E. Leone, E. Morelli, M. T. Di Martino et al., “Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth,” Clinical Cancer Research, vol. 19, no. 8, pp. 2096–2106, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. Pitari, M. Rossi, N. Amodio et al., “Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts,” Oncotarget, vol. 6, no. 29, pp. 27343–27358, 2015. View at Publisher · View at Google Scholar
  30. M. Leotta, L. Biamonte, L. Raimondi et al., “A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells,” Journal of Cellular Physiology, vol. 229, no. 12, pp. 2106–2116, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. M. T. Di Martino, A. Gullà, M. E. G. Cantafio et al., “In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma,” Oncotarget, vol. 4, no. 2, pp. 242–255, 2013. View at Google Scholar · View at Scopus
  32. M. T. Di Martino, A. Gullà, M. E. G. Cantafio et al., “In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells,” PLoS ONE, vol. 9, no. 2, Article ID e89659, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Amodio, M. Rossi, L. Raimondi et al., “miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies,” Oncotarget, vol. 6, no. 15, pp. 12837–12861, 2015. View at Publisher · View at Google Scholar
  34. H. Uchiyama, B. A. Barut, A. F. Mohrbacher, D. Chauhan, and K. C. Anderson, “Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion,” Blood, vol. 82, no. 12, pp. 3712–3720, 1993. View at Google Scholar · View at Scopus
  35. N. Giuliani, P. Storti, M. Bolzoni, B. D. Palma, and S. Bonomini, “Angiogenesis and multiple myeloma,” Cancer Microenvironment, vol. 4, no. 3, pp. 325–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kumar, T. E. Witzig, M. Timm et al., “Expression of VEGF and its receptors by myeloma cells,” Leukemia, vol. 17, no. 10, pp. 2025–2031, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Y.-T. Tai, X.-F. Li, I. Breitkreutz et al., “Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment,” Cancer Research, vol. 66, no. 13, pp. 6675–6682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Neri, S. Kumar, M. T. Fulciniti et al., “Neutralizing B-cell-activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model,” Clinical Cancer Research, vol. 13, no. 19, pp. 5903–5909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Hemingway, R. Taylor, H. J. Knowles, and N. A. Athanasou, “RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II,” Bone, vol. 48, no. 4, pp. 938–944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Vallet, S. Mukherjee, N. Vaghela et al., “Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5124–5129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Colombo, K. Thümmler, L. Mirandola et al., “Notch signaling drives multiple myeloma induced osteoclastogenesis,” Oncotarget, vol. 5, no. 21, pp. 10393–10406, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Roccaro, A. Sacco, P. Maiso et al., “BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression,” The Journal of Clinical Investigation, vol. 123, no. 4, pp. 1542–1555, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Raimondi, A. De Luca, N. Amodio et al., “Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation,” Oncotarget, vol. 6, no. 15, pp. 13772–13789, 2015. View at Publisher · View at Google Scholar
  44. T. Katagiri and N. Takahashi, “Regulatory mechanisms of osteoblast and osteoclast differentiation,” Oral Diseases, vol. 8, no. 3, pp. 147–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Dong, B. Yang, H. Guo, and F. Kang, “MicroRNAs regulate osteogenesis and chondrogenesis,” Biochemical and Biophysical Research Communications, vol. 418, no. 4, pp. 587–591, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Komori, “Regulation of bone development and extracellular matrix protein genes by RUNX2,” Cell and Tissue Research, vol. 339, no. 1, pp. 189–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Fulciniti, P. Tassone, T. Hideshima et al., “Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma,” Blood, vol. 114, no. 2, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. U. Heider, M. Kaiser, C. Müller et al., “Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment,” European Journal of Haematology, vol. 77, no. 3, pp. 233–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. G. D. Roodman, “Pathogenesis of myeloma bone disease,” Leukemia, vol. 23, no. 3, pp. 435–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Kawano, M. Moschetta, S. Manier et al., “Targeting the bone marrow microenvironment in multiple myeloma,” Immunological Reviews, vol. 263, no. 1, pp. 160–172, 2015. View at Publisher · View at Google Scholar
  51. K. Hageman, K. C. Patel, K. Mace, and M. R. Cooper, “The role of denosumab for prevention of skeletal-related complications in multiple myeloma,” Annals of Pharmacotherapy, vol. 47, no. 7-8, pp. 1069–1074, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. Y.-T. Tai, B. Y. Chang, S.-Y. Kong et al., “Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma,” Blood, vol. 120, no. 9, pp. 1877–1887, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Vacca, D. Ribatti, L. Roncali et al., “Bone marrow angiogenesis and progression in multiple myeloma,” British Journal of Haematology, vol. 87, no. 3, pp. 503–508, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Vacca and D. Ribatti, “Angiogenesis and vasculogenesis in multiple myeloma: role of inflammatory cells,” Recent Results in Cancer Research, vol. 183, pp. 87–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Vacca, M. Di Loreto, D. Ribatti et al., “Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-1, and CD44,” American Journal of Hematology, vol. 50, no. 1, pp. 9–14, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. S. V. Rajkumar, R. A. Mesa, R. Fonseca et al., “Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis,” Clinical Cancer Research, vol. 8, no. 7, pp. 2210–2216, 2002. View at Google Scholar · View at Scopus
  57. C. Jakob, J. Sterz, I. Zavrski et al., “Angiogenesis in multiple myeloma,” European Journal of Cancer, vol. 42, no. 11, pp. 1581–1590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Vacca, R. Ria, F. Semeraro et al., “Endothelial cells in the bone marrow of patients with multiple myeloma,” Blood, vol. 102, no. 9, pp. 3340–3348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Dankbar, T. Padró, R. Leo et al., “Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma,” Blood, vol. 95, no. 8, pp. 2630–2636, 2000. View at Google Scholar · View at Scopus
  60. D. Ribatti, G. Mangialardi, and A. Vacca, “Antiangiogenic therapeutic approaches in multiple myeloma,” Current Cancer Drug Targets, vol. 12, no. 7, pp. 768–775, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Manier, A. Sacco, X. Leleu, I. M. Ghobrial, and A. M. Roccaro, “Bone marrow microenvironment in multiple myeloma progression,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 157496, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Nicoloso, R. Spizzo, M. Shimizu, S. Rossi, and G. A. Calin, “MicroRNAs—the micro steering wheel of tumour metastases,” Nature Reviews Cancer, vol. 9, no. 4, pp. 293–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. X. Li, Z. Wu, X. Fu, and W. Han, “A microRNA component of the neoplastic microenvironment: microregulators with far-reaching impact,” BioMed Research International, vol. 2013, Article ID 762183, 7 pages, 2013. View at Publisher · View at Google Scholar
  64. S. K. Martin, P. Diamond, S. Gronthos, D. J. Peet, and A. C. W. Zannettino, “The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma,” Leukemia, vol. 25, no. 10, pp. 1533–1542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Kulshreshtha, R. V. Davuluri, G. A. Calin, and M. Ivan, “A microRNA component of the hypoxic response,” Cell Death and Differentiation, vol. 15, no. 4, pp. 667–671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Kulshreshtha, M. Ferracin, S. E. Wojcik et al., “A microRNA signature of hypoxia,” Molecular and Cellular Biology, vol. 27, no. 5, pp. 1859–1867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. A. G. de Herreros, S. Peiró, M. Nassour, and P. Savagner, “Snail family regulation and epithelial mesenchymal transitions in breast cancer progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 135–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. B. P. Zhou, J. Deng, W. Xia et al., “Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition,” Nature Cell Biology, vol. 6, no. 10, pp. 931–940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Larue and A. Bellacosa, “Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways,” Oncogene, vol. 24, no. 50, pp. 7443–7454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. A. K. Azab, J. Hu, P. Quang et al., “Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features,” Blood, vol. 119, no. 24, pp. 5782–5794, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Giuliani, R. Bataille, C. Mancini, M. Lazzaretti, and S. Barillé, “Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment,” Blood, vol. 98, no. 13, pp. 3527–3533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. P. I. Croucher, C. M. Shipman, J. Lippitt et al., “Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma,” Blood, vol. 98, no. 13, pp. 3534–3540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. O. Sezer, U. Heider, C. Jakob, J. Eucker, and K. Possinger, “Human bone marrow myeloma cells express RANKL,” Journal of Clinical Oncology, vol. 20, no. 1, pp. 353–354, 2002. View at Google Scholar
  74. U. Heider, C. Langelotz, C. Jakob et al., “Expression of receptor activator of nuclear factor κB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma,” Clinical Cancer Research, vol. 9, no. 4, pp. 1436–1440, 2003. View at Google Scholar · View at Scopus
  75. J. H. Kim, S. Kang, T. W. Kim, L. Yin, R. Liu, and S. J. Kim, “Expression profiling after induction of demethylation in MCF-7 breast cancer cells identifies involvement of TNF-α mediated cancer pathways,” Molecules and Cells, vol. 33, no. 2, pp. 127–133, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Yuan, G. C. F. Chan, K. L. Fung, and C. S. Chim, “RANKL expression in myeloma cells is regulated by a network involving RANKL promoter methylation, DNMT1, microRNA and TNFα in the microenvironment,” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, vol. 1843, no. 9, pp. 1834–1838, 2014. View at Publisher · View at Google Scholar · View at Scopus
  77. X. Shen, W. Zhu, X. Zhang, G. Xu, and S. Ju, “A role of both NF-kappaB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells,” Molecular and Cellular Biochemistry, vol. 357, no. 1-2, pp. 21–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. S. L. Corthals, S. M. Sun, R. Kuiper et al., “MicroRNA signatures characterize multiple myeloma patients,” Leukemia, vol. 25, no. 11, pp. 1784–1789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. X. Shen, Y. Guo, J. Yu et al., “miRNA-202 in bone marrow stromal cells affects the growth and adhesion of multiple myeloma cells by regulating B cell-activating factor,” The Clinical and Experimental Medicine, pp. 1–10, 2015. View at Publisher · View at Google Scholar
  80. A. Mahindra, T. Hideshima, and K. C. Anderson, “Multiple myeloma: biology of the disease,” Blood Reviews, vol. 24, supplement 1, pp. S5–S11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Hao, L. Zhang, G. An et al., “Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells,” Journal of Hematology and Oncology, vol. 4, article 37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Hao, L. Zhang, G. An et al., “Bone marrow stromal cells protect myeloma cells from bortezomib induced apoptosis by suppressing microRNA-15a expression,” Leukemia and Lymphoma, vol. 52, no. 9, pp. 1787–1794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Löffler, K. Brocke-Heidrich, G. Pfeifer et al., “Interleukin-6–dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer,” Blood, vol. 110, no. 4, pp. 1330–1333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. X. Wang, C. Li, S. Ju, Y. Wang, H. Wang, and R. Zhong, “Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation,” Leukemia and Lymphoma, vol. 52, no. 10, pp. 1991–1998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Garcia-Gomez, F. Sanchez-Guijo, M. C. Del Cañizo, J. F. San Miguel, and M. Garayoa, “Multiple myeloma mesenchymal stromal cells: contribution to myeloma bone disease and therapeutics,” World Journal of Stem Cells, vol. 6, no. 3, pp. 322–343, 2014. View at Publisher · View at Google Scholar
  86. C. Fei, Y. Zhao, J. Guo, S. Gu, X. Li, and C. Chang, “Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes,” European Journal of Haematology, vol. 93, no. 6, pp. 476–486, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Campisi and F. d'Adda di Fagagna, “Cellular senescence: when bad things happen to good cells,” Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 729–740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. M. R. Reagan and I. M. Ghobrial, “Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects,” Clinical Cancer Research, vol. 18, no. 2, pp. 342–349, 2012. View at Publisher · View at Google Scholar
  89. T. André, N. Meuleman, B. Stamatopoulos et al., “Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells,” PLoS ONE, vol. 8, no. 3, Article ID e59756, 2013. View at Publisher · View at Google Scholar · View at Scopus
  90. L. S. Nidadavolu, L. J. Niedernhofer, and S. A. Khan, “Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress,” Aging, vol. 5, no. 6, pp. 460–473, 2013. View at Google Scholar · View at Scopus
  91. R. Berenstein, O. Blau, A. Nogai et al., “Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region,” BMC Cancer, vol. 15, article 68, 2015. View at Publisher · View at Google Scholar
  92. I. Flor and J. Bullerdiek, “The dark side of a success story: microRNAs of the C19MC cluster in human tumours,” The Journal of Pathology, vol. 227, no. 3, pp. 270–274, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Chi, E. Ballabio, X.-H. Chen et al., “MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival,” Biology Direct, vol. 6, article 23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. A. M. Roccaro, A. Sacco, B. Thompson et al., “MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma,” Blood, vol. 113, no. 26, pp. 6669–6680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Wu, Y. Wu, M. Yang et al., “Comparison of concurrent chemoradiotherapy versus neoadjuvant chemotherapy followed by radiation in patients with advanced nasopharyngeal carcinoma in endemic area: experience of 128 consecutive cases with 5 year follow-up,” BMC Cancer, vol. 14, article 787, 2014. View at Publisher · View at Google Scholar
  96. P. W. B. Derksen, E. Tjin, H. P. Meijer et al., “Illegitimate WNT signaling promotes proliferation of multiple myeloma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 16, pp. 6122–6127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Mani, D. E. Carrasco, Z. Yunyu et al., “BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells,” Cancer Research, vol. 69, no. 19, pp. 7577–7586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. J.-J. Zhao, J. Lin, D. Zhu et al., “MiR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/ β-Catenin/BCL9 pathway,” Cancer Research, vol. 74, no. 6, pp. 1801–1813, 2014. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Takada, D. Zhu, G. H. Bird et al., “Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling,” Science Translational Medicine, vol. 4, no. 148, Article ID 148ra117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. Y.-W. Qiang, Y. Endo, J. S. Rubin, and S. Rudikoff, “Wnt signaling in B-cell neoplasia,” Oncogene, vol. 22, no. 10, pp. 1536–1545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Fulciniti, N. Amodio, R. L. Bandi et al., “MYD88-independent growth and survival effects of Sp1 transactivation in Waldenström macroglobulinemia,” Blood, vol. 123, no. 17, pp. 2673–2681, 2014. View at Publisher · View at Google Scholar · View at Scopus
  102. N. Amodio, D. Bellizzi, M. Leotta et al., “miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells,” Cell Cycle, vol. 12, no. 23, pp. 3650–3662, 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Amodio, M. Leotta, D. Bellizzi et al., “DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma,” Oncotarget, vol. 3, no. 10, pp. 1246–1258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. K. Kapinas and A. M. Delany, “MicroRNA biogenesis and regulation of bone remodeling,” Arthritis Research & Therapy, vol. 13, no. 3, article 220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Rossi, M. R. Pitari, N. Amodio et al., “miR-29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma-related bone disease,” Journal of Cellular Physiology, vol. 228, no. 7, pp. 1506–1515, 2013. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Pichiorri, S.-S. Suh, A. Rocci et al., “Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development,” Cancer Cell, vol. 18, no. 4, pp. 367–381, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Calimeri, E. Battista, F. Conforti et al., “A unique three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells,” Leukemia, vol. 25, no. 4, pp. 707–711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Lionetti, M. Biasiolo, L. Agnelli et al., “Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma,” Blood, vol. 114, no. 25, pp. e20–e26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Xu, G. Cecilia Santini, K. De Veirman et al., “Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients,” PLoS ONE, vol. 8, no. 11, Article ID e79752, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. M. R. Reagan, Y. Mishima, S. V. Glavey et al., “Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model,” Blood, vol. 124, no. 22, pp. 3250–3259, 2014. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Tamama, H. Kawasaki, and A. Wells, “Epidermal Growth Factor (EGF) treatment on Multipotential Stromal Cells (MSCs). Possible enhancement of therapeutic potential of MSC,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 795385, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. N. Wada, H. Maeda, D. Hasegawa et al., “Semaphorin 3A induces mesenchymal-stem-like properties in human periodontal ligament cells,” Stem Cells and Development, vol. 23, no. 18, pp. 2225–2236, 2014. View at Publisher · View at Google Scholar · View at Scopus
  113. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. H. I. Suzuki, A. Katsura, H. Matsuyama, and K. Miyazono, “MicroRNA regulons in tumor microenvironment,” Oncogene, vol. 34, no. 24, pp. 3085–3094, 2015. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Turchinovich, T. R. Samatov, A. G. Tonevitsky, and B. Burwinkel, “Circulating miRNAs: cell-cell communication function?” Frontiers in Genetics, vol. 4, article 119, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Kosaka, Y. Yoshioka, K. Hagiwara, N. Tominaga, T. Katsuda, and T. Ochiya, “Trash or Treasure: extracellular microRNAs and cell-to-cell communication,” Frontiers in Genetics, vol. 4, article 173, 2013. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Fabbri, A. Paone, F. Calore et al., “MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 31, pp. E2110–E2116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. S. M. Lehmann, C. Krüger, B. Park et al., “An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration,” Nature Neuroscience, vol. 15, no. 6, pp. 827–835, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. N. Kosaka, H. Iguchi, and T. Ochiya, “Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis,” Cancer Science, vol. 101, no. 10, pp. 2087–2092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Rocci, C. C. Hofmeister, and F. Pichiorri, “The potential of miRNAs as biomarkers for multiple myeloma,” Expert Review of Molecular Diagnostics, vol. 14, no. 8, pp. 947–959, 2014. View at Publisher · View at Google Scholar · View at Scopus
  121. L. Kubiczkova, F. Kryukov, O. Slaby et al., “Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance,” Haematologica, vol. 99, no. 3, pp. 511–518, 2014. View at Publisher · View at Google Scholar · View at Scopus
  122. C. I. Jones, M. V. Zabolotskaya, A. J. King et al., “Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma,” British Journal of Cancer, vol. 107, no. 12, pp. 1987–1996, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. J.-J. Huang, J. Yu, J.-Y. Li, Y.-T. Liu, and R.-Q. Zhong, “Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma,” Medical Oncology, vol. 29, no. 4, pp. 2402–2408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. T. Umezu, H. Tadokoro, K. Azuma, S. Yoshizawa, K. Ohyashiki, and J. H. Ohyashiki, “Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1,” Blood, vol. 124, no. 25, pp. 3748–3757, 2014. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Wu, W. Yu, X. Qu et al., “Argonaute 2 promotes myeloma angiogenesis via microRNA dysregulation,” Journal of Hematology and Oncology, vol. 7, no. 1, article 40, 2014. View at Publisher · View at Google Scholar · View at Scopus