Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 9249401, 10 pages
http://dx.doi.org/10.1155/2016/9249401
Research Article

Aberrant LncRNA Expression Profile in a Contusion Spinal Cord Injury Mouse Model

1Department of Orthopedics, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China
2Department of Orthopedic Surgery, Fuyang People’s Hospital, Anhui Medical University, No. 63 Luci Street, Fuyang City, Anhui 236004, China

Received 2 May 2016; Accepted 26 June 2016

Academic Editor: Yudong Cai

Copyright © 2016 Ya Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. McDonald and C. Sadowsky, “Spinal-cord injury,” The Lancet, vol. 359, no. 9304, pp. 417–425, 2002. View at Publisher · View at Google Scholar
  2. V. Estrada and H. W. Müller, “Spinal cord injury—there is not just one way of treating it,” F1000Prime Reports, vol. 6, article 84, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Di Giovanni, S. M. Knoblach, C. Brandoli, S. A. Aden, E. P. Hoffman, and A. I. Faden, “Gene profiling in spinal cord injury shows role of cell cycle neuronal death,” Annals of Neurology, vol. 53, no. 4, pp. 454–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Lee-Liu, M. Moreno, L. I. Almonacid et al., “Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages,” Neural Development, vol. 9, article 12, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Kapranov, J. Cheng, S. Dike et al., “RNA maps reveal new RNA classes and a possible function for pervasive transcription,” Science, vol. 316, no. 5830, pp. 1484–1488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. O. G. Bhalala, M. Srikanth, and J. A. Kessler, “The emerging roles of microRNAs in CNS injuries,” Nature Reviews Neurology, vol. 9, no. 6, pp. 328–339, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Hayashi, T. Ueyama, K. Nemoto, T. Tamaki, and E. Senba, “Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury,” Journal of Neurotrauma, vol. 17, no. 3, pp. 203–218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. N. K. Liu, X. F. Wang, Q. B. Lu, and X. M. Xu, “Altered microRNA expression following traumatic spinal cord injury,” Experimental Neurology, vol. 219, no. 2, pp. 424–429, 2009. View at Publisher · View at Google Scholar
  9. T. R. Mercer, M. E. Dinger, and J. S. Mattick, “Long non-coding RNAs: insights into functions,” Nature Reviews Genetics, vol. 10, no. 3, pp. 155–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. A. Qureshi, J. S. Mattick, and M. F. Mehler, “Long non-coding RNAs in nervous system function and disease,” Brain Research, vol. 1338, pp. 20–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Chamberlain and C. I. Brannan, “The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a,” Genomics, vol. 73, no. 3, pp. 316–322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Huarte, M. Guttman, D. Feldser et al., “A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response,” Cell, vol. 142, no. 3, pp. 409–419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Ramoni, P. Sebastiani, and I. S. Kohane, “Cluster analysis of gene expression dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 14, pp. 9121–9126, 2002. View at Publisher · View at Google Scholar
  14. L. D. Miller, P. M. Long, L. Wong, S. Mukherjee, L. M. McShane, and E. T. Liu, “Optimal gene expression analysis by microarrays,” Cancer Cell, vol. 2, no. 5, pp. 353–361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Schlitt, K. Palin, J. Rung et al., “From gene networks to gene function,” Genome Research, vol. 13, no. 12, pp. 2568–2576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology. The Gene Ontology Consortium,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar
  17. T. Beissbarth and T. P. Speed, “GOstat: find statistically overrepresented Gene Ontologies within a group of genes,” Bioinformatics, vol. 20, no. 9, pp. 1464–1465, 2004. View at Google Scholar
  18. A. Y. Gracey, E. J. Fraser, W. Li et al., “Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 48, pp. 16970–16975, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Draghici, P. Khatri, A. L. Tarca et al., “A systems biology approach for pathway level analysis,” Genome Research, vol. 17, no. 10, pp. 1537–1545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Prieto, A. Risueño, C. Fontanillo, and J. De Las Rivas, “Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles,” PLoS ONE, vol. 3, no. 12, article e3911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Calderwood, K. Venkatesan, L. Xing et al., “Epstein-Barr virus and virus human protein interaction maps,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7606–7611, 2007. View at Google Scholar
  23. M. A. Pujana, J. D. Han, L. M. Starita et al., “Network modeling links breast cancer susceptibility and centrosome dysfunction,” Nature Genetics, vol. 39, no. 11, pp. 1338–1349, 2007. View at Google Scholar
  24. B. Guennewig and A. A. Cooper, “The central role of noncoding RNA in the brain,” International Review of Neurobiology, vol. 116, pp. 153–194, 2014. View at Publisher · View at Google Scholar
  25. B. K. Kwon, W. Tetzlaff, J. N. Grauer, J. Beiner, and A. R. Vaccaro, “Pathophysiology and pharmacologic treatment of acute spinal cord injury,” Spine Journal, vol. 4, no. 4, pp. 451–464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. P. Amar and M. L. Levy, “Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury,” Neurosurgery, vol. 44, no. 5, pp. 1027–1039, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. C. H. Tator and M. G. Fehlings, “Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms,” Journal of Neurosurgery, vol. 75, no. 1, pp. 15–26, 1991. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Emery, P. Aldana, M. B. Bunge et al., “Apoptosis after traumatic human spinal cord injury,” Journal of Neurosurgery, vol. 89, no. 6, pp. 911–920, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Crowe, J. C. Bresnahan, S. L. Shuman, J. N. Masters, and M. S. Beattie, “Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys,” Nature Medicine, vol. 3, no. 1, pp. 73–76, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Yong, P. M. Arnold, M. N. Zoubine et al., “Apoptosis in cellular compartments of rat spinal cord after severe contusion injury,” Journal of Neurotrauma, vol. 15, no. 7, pp. 459–472, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. B. K. Kwon, T. R. Oxland, and W. Tetzlaff, “Animal models used in spinal cord regeneration research,” Spine, vol. 27, no. 14, pp. 1504–1510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. Walker, C. L. Walker, Y. P. Zhang, L. B. Shields, C. B. Shields, and X. M. Xu, “A novel vertebral stabilization method for producing contusive spinal cord injury,” Journal of Visualized Experiments, vol. 20, no. 95, Article ID e50149, 2015. View at Publisher · View at Google Scholar
  33. Y.-H. Li, H.-L. Fu, M.-L. Tian et al., “Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice,” Scientific Reports, vol. 6, article 19869, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Tsai, S. K. Tsai, M. C. Huang et al., “Acidic FGF promotes neurite outgrowth of cortical neurons and improves neuroprotective effect in a cerebral ischemic rat model,” Neuroscience, vol. 305, pp. 238–247, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Ke, Y.-L. Yao, J. Zheng et al., “Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326,” Oncotarget, vol. 6, no. 26, pp. 21934–21949, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Nakamura, C. Nakamoto, H. Obama, E. Durward, and M. Nakamoto, “Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions,” The Journal of Biological Chemistry, vol. 287, no. 5, pp. 3282–3291, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Hennekinne, S. Colasse, A. Triller, and M. Renner, “Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons,” Journal of Neuroscience, vol. 33, no. 28, pp. 11432–11439, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Son, D. W. Nam, M.-Y. Cha et al., “Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer's disease,” Neurobiology of Aging, vol. 36, no. 12, pp. 3214–3227, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Sosińska, J. Mikuła-Pietrasik, and K. Ksiazek, “The double-edged sword of long non-coding RNA: the role of human brain-specific BC200 RNA in translational control, neurodegenerative diseases, and cancer,” Mutation Research—Reviews in Mutation Research, vol. 766, pp. 58–67, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Szafranski, K. J. Abraham, and K. Mekhail, “Non-coding RNA in neural function, disease, and aging,” Frontiers in Genetics, vol. 6, article no. 87, 2015. View at Publisher · View at Google Scholar · View at Scopus