Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 3742182, 8 pages
https://doi.org/10.1155/2017/3742182
Clinical Study

Intraoperative Myelography in Transpsoas Lateral Lumbar Interbody Fusion for Degenerative Lumbar Spinal Stenosis: A Preliminary Prospective Study

Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China

Correspondence should be addressed to Limin Rong; moc.361@12mlgnor and Bin Liu; moc.anis@1002uilnhoj

Received 1 April 2017; Revised 24 August 2017; Accepted 10 September 2017; Published 2 November 2017

Academic Editor: Panagiotis Korovessis

Copyright © 2017 Yang Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Pawar, A. Dhar, A. Prasad, S. Munjal, and P. S. Ramani, “Internal decompression for spinal stenosis (IDSS) for decompression and use of interlaminar dynamic device (CoflexTM) for stabilization in the surgical management of degenerative lumbar canal stenosis with or without mild segmental instability: our initial results,” Neurological Research, vol. 39, no. 4, pp. 305–310, 2017. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Wu, W.-D. Yu, R. Jiang, and Z.-L. Gao, “Treatment of multilevel degenerative lumbar spinal stenosis with spondylolisthesis using a combination of microendoscopic discectomy and minimally invasive transforaminal lumbar interbody fusion,” Experimental and Therapeutic Medicine, vol. 5, no. 2, pp. 567–571, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-L. Pao and J.-L. Wang, “Intraoperative myelography in minimally invasive decompression for degenerative lumbar spinal stenosis,” Journal of Spinal Disorders & Techniques, vol. 25, no. 5, pp. E117–E124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Trouillier, C. Birkenmaier, A. Rauch, C. Weiler, T. Kauschke, and H. J. Refior, “Posterior lumbar interbody fusion (PLIF) with cages and local bone graft in the treatment of spinal stenosis,” Acta Orthopædica Belgica, vol. 72, no. 4, pp. 460–466, 2006. View at Google Scholar · View at Scopus
  5. S. Burneikiene, E. L. Nelson, A. Mason, S. Rajpal, B. Serxner, and A. T. Villavicencio, “Complications in patients undergoing combined transforaminal lumbar interbody fusion and posterior instrumentation with deformity correction for degenerative scoliosis and spinal stenosis,” Surgical Neurology International, vol. 3, no. 1, Article ID 92933, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Caputo, K. W. Michael, T. M. Chapman et al., “Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis,” The Scientific World Journal, vol. 2012, Article ID 680643, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Arnold, K. Anderson, and R. McGuire, “The lateral transpsoas approach to the lumbar and thoracic spine: a review,” Surgical Neurology International, vol. 3, no. 4, pp. S198–S215, 2012. View at Publisher · View at Google Scholar
  8. J. A. Youssef, P. C. McAfee, C. A. Patty et al., “Minimally invasive surgery: lateral approach interbody fusion: results and review,” The Spine Journal, vol. 35, pp. S302–S311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. M. Ozgur, H. E. Aryan, L. Pimenta, and W. R. Taylor, “Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion,” The Spine Journal, vol. 6, no. 4, pp. 435–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Posner, A. A. White III, W. T. Edwards, and W. C. Hayes, “A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine,” The Spine Journal, vol. 7, no. 4, pp. 374–389, 1982. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Fujiwara, K. Tamai, M. Yamato et al., “The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study,” European Spine Journal, vol. 8, no. 5, pp. 396–401, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. W. W. Eckman, L. Hester, and M. McMillen, “Same-day discharge after minimally invasive transforaminal lumbar interbody fusion: a series of 808 cases,” Clinical Orthopaedics and Related Research, vol. 472, no. 6, pp. 1806–1812, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Singh, S. V. Nandyala, A. Marquez-Lara et al., “A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion,” The Spine Journal, vol. 14, no. 8, pp. 1694–1701, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Yang, J. Xie, B. Yin, L. Wang, S. Fang, and S. Wan, “Treatment of cervical disc herniation through percutaneous minimally invasive techniques,” European Spine Journal, vol. 23, no. 2, pp. 382–388, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. J. N. Sembrano, E. R. G. Santos, and D. W. Polly Jr., “New generation intraoperative three-dimensional imaging (O-arm) in 100 spine surgeries: does it change the surgical procedure?” Journal of Clinical Neuroscience, vol. 21, no. 2, pp. 225–231, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. G. A. Marulanda, A. Nayak, R. Murtagh, B. G. Santoni, J. B. Billys, and A. E. Castellvi, “A cadaveric radiographic analysis on the effect of extreme lateral interbody fusion cage placement with supplementary internal fixation on indirect spine decompression,” Journal of Spinal Disorders & Techniques, vol. 27, no. 5, pp. 263–270, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. E. H. Elowitz, D. S. Yanni, M. Chwajol, R. M. Starke, and N. I. Perin, “Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis,” Minimally Invasive Neurosurgery, vol. 54, no. 5-6, pp. 201–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Eadsforth, S. Niven, and C. Barrett, “The utility of myelography in lumbar canal stenosis,” British Journal of Neurosurgery, vol. 26, no. 4, pp. 578-579, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Morita, A. Miyauchi, S. Okuda, T. Oda, and M. Iwasaki, “Comparison between MRI and myelography in lumbar spinal canal stenosis for the decision of levels of decompression surgery,” Journal of Spinal Disorders & Techniques, vol. 24, no. 1, pp. 31–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Westermaier, S. Koehler, T. Linsenmann, M. Kiderlen, P. Pakos, and R. Ernestus, “Intraoperative myelography in cervical multilevel stenosis using 3D rotational fluoroscopy: assessment of feasibility and image quality,” Radiology Research and Practice, vol. 2015, Article ID 498936, 7 pages, 2015. View at Publisher · View at Google Scholar
  21. Y. Hirasawa, W. A. Bashir, F. W. Smith, M. L. Magnusson, M. H. Pope, and K. Takahashi, “Postural changes of the dural sac in the lumbar spines of asymptomatic individuals using positional stand-up magnetic resonance imaging,” The Spine Journal, vol. 32, no. 4, pp. E136–E140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Madsen, T. S. Jensen, M. Pope, J. S. Sørensen, and T. Bendix, “The effect of body position and axial load on spinal canal morphology: an MRI study of central spinal stenosis,” The Spine Journal, vol. 33, no. 1, pp. 61–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Coulier, B. Devyver, and J. P. Ghosez, “Severe underestimation of lumbar spinal stenosis by supine imaging,” Clinical Radiology, vol. 58, no. 2, pp. 167–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kanbara, Y. Yukawa, K. Ito, M. Machino, and F. Kato, “Dynamic changes in the dural sac of patients with lumbar canal stenosis evaluated by multidetector-row computed tomography after myelography,” European Spine Journal, vol. 23, no. 1, pp. 74–79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Sasaki, K. Hasegawa, H. Shimoda, I. Keiji, and T. Homma, “Can recumbent magnetic resonance imaging replace myelography or computed tomography myelography for detecting lumbar spinal stenosis?” European Journal of Orthopaedic Surgery and Traumatology, vol. 23, no. 1, pp. S77–S83, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. W. S. Bartynski and L. Lin, “Lumbar root compression in the lateral recess: MR imaging, conventional myelography, and CT myelography comparison with surgical confirmation,” American Journal of Neuroradiology, vol. 24, no. 3, pp. 348–360, 2003. View at Google Scholar · View at Scopus
  27. V. V. Patel, A. Dwyer, S. Estes, and E. Burger, “Intraoperative 3-dimensional reconstructed multiplanar fluoroscopic imaging for immediate evaluation of spinal decompression,” Journal of Spinal Disorders & Techniques, vol. 21, no. 3, pp. 209–212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. U. M. Mauer, U. Kunz, and C. Schulz, “Intraoperative three-dimensional imaging in selective decompression for lumbar spinal stenosis: a useful tool in theory but also in everyday practice?” Radiology Research and Practice, vol. 2011, Article ID 108438, 4 pages, 2011. View at Publisher · View at Google Scholar
  29. Y. C. Zhang, A. J. Chandler, and N. J. Kagetsu, “Technical compliance to standard guidelines for lumbar puncture and myelography: survey of academic neuroradiology attendings and fellows,” Academic Radiology, vol. 21, no. 5, pp. 612–616, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. Sather, M. D. Gibson, and J. S. Treves, “Spinal subarachnoid hematoma resulting from lumbar myelography,” American Journal of Neuroradiology, vol. 28, pp. 220-221, 2007. View at Google Scholar
  31. K. Park, J. Moon, C. Oh, and T. Yoon, “Acetabular central fracture dislocation after generalized seizure during lumbar myelography with iohexol,” Case Reports in Orthopedics, vol. 2013, Article ID 190917, 3 pages, 2013. View at Publisher · View at Google Scholar