Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 6085741, 11 pages
https://doi.org/10.1155/2017/6085741
Research Article

Sterilization of Biofilm on a Titanium Surface Using a Combination of Nonthermal Plasma and Chlorhexidine Digluconate

1Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43606, USA
2Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
3Department of Orthopedic Surgery, The University of Toledo Medical Center, Toledo, OH 43614, USA
4Department of Mechanical, Industrial, and Manufacturing Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA

Correspondence should be addressed to Halim Ayan; ude.odelotu@naya.milah

Received 9 June 2017; Accepted 9 August 2017; Published 19 September 2017

Academic Editor: Jozef Anné

Copyright © 2017 Tripti Thapa Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nature Reviews Microbiology, vol. 2, no. 2, pp. 95–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, and O. Ciofu, “Antibiotic resistance of bacterial biofilms,” International Journal of Antimicrobial Agents, vol. 35, no. 4, pp. 322–332, 2010. View at Publisher · View at Google Scholar
  3. R. O. Darouiche, “Treatment of infections associated with surgical implants,” The New England Journal of Medicine, vol. 350, no. 14, pp. 1422–1429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Lavernia, D. J. Lee, and V. H. Hernandez, “The increasing financial burden of knee revision surgery in the United States,” Clinical Orthopaedics and Related Research, vol. 446, pp. 221–226, 2006. View at Publisher · View at Google Scholar
  5. T. N. Peel, M. M. Dowsey, K. L. Buising, D. Liew, and P. F. M. Choong, “Cost analysis of debridement and retention for management of prosthetic joint infection,” Clinical Microbiology and Infection, vol. 19, no. 2, pp. 181–186, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. K. J. Bozic and M. D. Ries, “The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization,” The Journal of Bone and Joint Surgery—American Volume, vol. 87, no. 8, pp. 1746–1751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Kurtz, E. Lau, J. Schmier, K. L. Ong, K. Zhao, and J. Parvizi, “InfectiInfection burden for hip and knee arthroplasty in the United States,” The Journal of Arthroplasty, vol. 23, no. 7, pp. 984–991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wu, C. Moser, H.-Z. Wang, N. Høiby, and Z.-J. Song, “Strategies for combating bacterial biofilm infections,” International Journal of Oral Science, vol. 7, pp. 1–7, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Donlan, “Biofilms and device-associated infections,” Emerging Infectious Diseases, vol. 7, no. 2, pp. 277–281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. P. A. Santos, E. Watanabe, and D. de Andrade, “Biofilm on artificial pacemaker: fiction or reality?” Arquivos Brasileiros de Cardiologia, vol. 97, no. 5, pp. e113–e119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Subbiahdoss, R. Kuijer, D. W. Grijpma, H. C. van der Mei, and H. J. Busscher, “Microbial biofilm growth vs. tissue integration: "the race for the surface" experimentally studied,” Acta Biomaterialia, vol. 5, no. 5, pp. 1399–1404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. McConoughey, R. Howlin, J. F. Granger et al., “Biofilms in periprosthetic orthopedic infections,” Future Microbiology, vol. 9, no. 8, pp. 987–1007, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Fricke, I. Koban, H. Tresp et al., “Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms,” PLoS ONE, vol. 7, no. 8, Article ID e42539, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Ayan, D. Staack, G. Fridman et al., “Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces,” Journal of Physics D: Applied Physics, vol. 42, no. 12, Article ID 125202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Fridman, M. Peddinghaus, H. Ayan et al., “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chemistry and Plasma Processing, vol. 26, no. 4, pp. 425–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Isbary, W. Stolz, T. Shimizu et al., “Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo,” Clinical Plasma Medicine, vol. 1, no. 2, pp. 25–30, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Laroussi, “Low temperature plasma-based sterilization: overview and state-of-the-art,” Plasma Processes and Polymers, vol. 2, no. 5, pp. 391–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, “Applied plasma medicine,” Plasma Processes and Polymers, vol. 5, no. 6, pp. 503–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Ayan, G. Fridman, A. F. Gutsol, V. N. Vasilets, A. Fridman, and G. Friedman, “Nanosecond-pulsed uniform dielectric-barrier discharge,” IEEE Transactions on Plasma Science, vol. 36, no. 2, pp. 504–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Stoffels, I. E. Kieft, R. E. J. Sladek, L. J. M. Van Den Bedem, E. P. Van Der Laan, and M. Steinbuch, “Plasma needle for in vivo medical treatment: recent developments and perspectives,” Plasma Sources Science and Technology, vol. 15, no. 4, pp. S169–S180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Fridman, A. Shereshevsky, M. M. Jost et al., “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in Melanoma skin cancer cell lines,” Plasma Chemistry and Plasma Processing, vol. 27, no. 2, pp. 163–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. G. Kostov, A. C. Borges, C. Y. Koga-Ito, T. M. C. Nishime, V. Prysiazhnyi, and R. Y. Honda, “Inactivation of candida albicans by cold atmospheric pressure plasma jet,” IEEE Transactions on Plasma Science, vol. 43, no. 3, pp. 770–775, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Y. Alkawareek, Q. T. Algwari, G. Laverty et al., “Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma,” PLoS ONE, vol. 7, no. 8, Article ID e44289, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Koban, M. H. Geisel, B. Holtfreter et al., “Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms,” ISRN Dentistry, vol. 2013, pp. 1–10, 2013. View at Publisher · View at Google Scholar
  25. L. Taghizadeh, G. Brackman, A. Nikiforov, J. Van Der Mullen, C. Leys, and T. Coenye, “Inactivation of biofilms using a low power atmospheric pressure argon plasma jet; the role of entrained nitrogen,” Plasma Processes and Polymers, vol. 12, no. 1, pp. 75–81, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. H. M. Joh, J. Y. Choi, S. J. Kim, T. H. Chung, and T.-H. Kang, “Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet,” Scientific Reports, vol. 4, article no. 6638, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Girgenti and K. S. Kaye, “The Role of Chlorhexidine in Vascular Access: Protecting Your Patient,” The Role of Chlorhexidine in Vascular Access: Protecting Your Patient, 2012. View at Google Scholar
  28. B. P. F. A. Gomes, S. F. C. Souza, C. C. R. Ferraz et al., “Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro,” International Endodontic Journal, vol. 36, no. 4, pp. 267–275, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. P. F. A. Gomes, M. E. Vianna, A. A. Zaia, J. F. A. Almeida, F. J. Souza-Filho, and C. C. R. Ferraz, “Chlorhexidine in endodontics,” Brazilian Dental Journal, vol. 24, no. 2, pp. 89–102, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Athanassiadis, P. V. Abbott, and L. J. Walsh, “The use of calcium hydroxide, antibiotics and biocides as antimicrobial medicaments in endodontics,” Australian Dental Journal, vol. 52, supplement 1, pp. S64–S82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. McDonnell and A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 147–179, 1999. View at Google Scholar · View at Scopus
  32. R. Matthes, I. Koban, C. Bender et al., “Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis,” Plasma Processes and Polymers, vol. 10, no. 2, pp. 161–166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. D. L. Williams and R. D. Bloebaum, “Observing the biofilm matrix of staphylococcus epidermidis ATCC 35984 grown using the CDC biofilm reactor,” Microscopy and Microanalysis, vol. 16, no. 2, pp. 143–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Matthes, C. Bender, R. Schlüter et al., “Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms,” PLoS ONE, vol. 8, no. 7, Article ID e70462, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. U. N. Pal, M. Kumar, M. S. Tyagi, B. L. Meena, H. Khatun, and A. K. Sharma, “Discharge analysis and electrical modeling for the development of efficient dielectric barrier discharge,” Journal of Physics: Conference Series, vol. 208, Article ID 012142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. B. Karki, E. Yildirim-Ayan, K. M. Eisenmann, and H. Ayan, “Miniature dielectric barrier discharge nonthermal plasma induces apoptosis in lung cancer cells and inhibits cell migration,” BioMed Research International, vol. 2017, Article ID 8058307, 2017. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Cheng, J. Sherman, W. Murphy, E. Ratovitski, J. Canady, and M. Keidar, “The effect of tuning cold plasma composition on glioblastoma cell viability,” PLoS ONE, vol. 9, no. 5, Article ID e98652, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. S. B. Karki, T. T. Gupta, E. Yildirim-Ayan, K. M. Eisenmann, and H. Ayan, “Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices,” Journal of Physics D: Applied Physics, vol. 50, no. 31, p. 315401, 2017. View at Publisher · View at Google Scholar
  39. M. Yousfi, N. Merbahi, A. Pathak, and O. Eichwald, “Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine,” Fundamental and Clinical Pharmacology, vol. 28, no. 2, pp. 123–135, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. E. B. Moffa, F. E. Izumida, M. C. M. Mussi, W. L. Siqueira, J. H. Jorge, and E. T. Giampaolo, “Interaction between XTT assay and candida albicans or streptococcus mutans viability,” Journal of International Oral Health, vol. 8, p. 12, 2016. View at Google Scholar
  41. M. Özcan and C. Hämmerle, “Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls,” Materials, vol. 5, no. 9, pp. 1528–1545, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Golkowski, C. Golkowski, J. Leszczynski et al., “Hydrogen-peroxide-enhanced nonthermal plasma effluent for biomedical applications,” IEEE Transactions on Plasma Science, vol. 40, no. 8, pp. 1984–1991, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Liao, D. Liu, Q. Xiang et al., “Inactivation mechanisms of non-thermal plasma on microbes: a review,” Food Control, vol. 75, pp. 83–91, 2017. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Y. Alkawareek, S. P. Gorman, W. G. Graham, and B. F. Gilmore, “Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma,” International Journal of Antimicrobial Agents, vol. 43, no. 2, pp. 154–160, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. B. P. F. A. Gomes, C. C. R. Ferraz, M. E. Vianna, V. B. Berber, F. B. Teixeira, and F. J. Souza-Filho, “In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis,” International Endodontic Journal, vol. 34, no. 6, pp. 424–428, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Du, Q. Shi, Y. Shen et al., “Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro,” Journal of Endodontics, vol. 39, no. 11, pp. 1438–1443, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. S. R. Herbst, M. Hertel, H. Ballout et al., “Bactericidal efficacy of cold plasma at different depths of infected root canals In Vitro,” Open Dentistry Journal, vol. 9, pp. 486–491, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. S. G. Joshi, M. Paff, G. Friedman, G. Fridman, A. Fridman, and A. D. Brooks, “Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma,” American Journal of Infection Control, vol. 38, no. 4, pp. 293–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Chaieb, T. Zmantar, Y. Souiden, K. Mahdouani, and A. Bakhrouf, “XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of Staphylococcus epidermidis,” Microbial Pathogenesis, vol. 50, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. I. E. Wali, G. E. M. Eid, W. A. Omar, and S. ElRafie, “The Antimicrobial Efficacy of Ozonated Water, Chlorhexidine and Sodium Hypochlorite against Single Species Biofilms of Enterococcus faecalis and Candida albicans,” Egyptian Journal of Medical Microbiology, vol. 17, 2008. View at Google Scholar
  51. S. Rupf, A. N. Idlibi, F. A. Marrawi et al., “Removing biofilms from microstructured titanium Ex Vivo: A novel approach using atmospheric plasma technology,” PLoS ONE, vol. 6, no. 10, Article ID e25893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Wu, M. M. Baum, J. Kerwin et al., “Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae,” Pathogens and Disease, vol. 72, no. 3, pp. 143–160, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. O. Lunov, O. Churpita, V. Zablotskii et al., “Non-thermal plasma mills bacteria: Scanning electron microscopy observations,” Applied Physics Letters, vol. 106, no. 5, Article ID 053703, 2015. View at Publisher · View at Google Scholar · View at Scopus