Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 6594271, 10 pages
https://doi.org/10.1155/2017/6594271
Research Article

Genetic Variant of Kalirin Gene Is Associated with Ischemic Stroke in a Chinese Han Population

1Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
2Department of Cardiology, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, China
3Department of Clinical Epidemiology, Library, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
4Epidemiology Department of China Medical University, No. 77 Puhe Road, Shenyang 110000, China

Correspondence should be addressed to Yingxian Sun; nc.ude.umc@nusxy

Received 11 February 2017; Revised 10 April 2017; Accepted 18 May 2017; Published 19 June 2017

Academic Editor: Maria Barbolina

Copyright © 2017 Hong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Meschia, C. Bushnell, B. Boden-Albala et al., “Guidelines for the primary prevention of stroke: A statement for healthcare professionals from the American heart association/American stroke association,” Stroke, vol. 45, no. 12, pp. 3754–3832, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. L. Murray and A. D. Lopez, “Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study,” The Lancet, vol. 349, no. 9064, pp. 1498–1504, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. J. He, D. Gu, X. Wu et al., “Major causes of death among men and women in China,” The New England Journal of Medicine, vol. 353, no. 11, pp. 1124–1134, 2005. View at Publisher · View at Google Scholar
  4. H. S. Markus and S. Bevan, “Mechanisms and treatment of ischaemic stroke - Insights from genetic associations,” Nature Reviews Neurology, vol. 10, no. 12, pp. 723–730, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Floßmann, U. G. R. Schulz, and P. M. Rothwell, “Systematic Review of Methods and Results of Studies of the Genetic Epidemiology of Ischemic Stroke,” Stroke, vol. 35, no. 1, pp. 212–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Bak, D. Gaist, S. H. Sindrup, A. Skytthe, and K. Christensen, “Genetic liability in stroke: a long-term follow-up study of Danish twins,” Stroke, vol. 33, no. 3, pp. 769–774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. O'Donnell, S. L. Chin, S. Rangarajan et al., “Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study,” The Lancet, vol. 388, no. 10046, pp. 761–775, 2016. View at Publisher · View at Google Scholar
  8. M. F. Waters, B. L. Hoh, M. J. Lynn et al., “Factors associated with recurrent ischemic stroke in the medical group of the SAMMPRIS Trial,” JAMA Neurology, vol. 73, no. 3, pp. 308–315, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Mandela and X.-M. Ma, “Kalirin, a key player in synapse formation, is implicated in human diseases,” Neural Plasticity, vol. 2012, Article ID 728161, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. Cahill, Z. Xie, M. Day et al., “Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes,” in Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 13058–13063, 2009.
  11. Y.-C. Tsai, O. Riess, A. S. Soehn, and H. P. Nguyen, “The Guanine Nucleotide Exchange Factor Kalirin-7 Is a Novel Synphilin-1 Interacting Protein and Modifies Synphilin-1 Aggregate Transport and Formation,” PLoS ONE, vol. 7, no. 12, Article ID e51999, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-H. Wu, A. C. Fanaroff, K. C. Sharma et al., “Kalirin promotes neointimal hyperplasia by activating rac in smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 4, pp. 702–708, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Boroumand, S. Ziaee, N. Zarghami et al., “The Kalirin gene rs9289231 polymorphism as a novel predisposing marker for coronary artery disease,” Laboratory Medicine, vol. 45, no. 4, pp. 302–308, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. B. D. Horne, E. R. Hauser, L. Wang et al., “Validation study of genetic associations with coronary artery disease on chromosome 3q13-21 and potential effect modification by smoking,” Annals of Human Genetics, vol. 73, no. 6, pp. 551–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Wang, E. R. Hauser, S. H. Shah et al., “Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease,” American Journal of Human Genetics, vol. 80, no. 4, pp. 650–663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Ward-Caviness, C. Haynes, C. Blach et al., “Gene-smoking interactions in multiple Rho-GTPase pathway genes in an early-onset coronary artery disease cohort,” Human Genetics, vol. 132, no. 12, pp. 1371–1382, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Zheng, Z. Sun, J. Li et al., “Pulse pressure and mean arterial pressure in relation to ischemic stroke among patients with uncontrolled hypertension in rural areas of China,” Stroke, vol. 39, no. 7, pp. 1932–1937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Yi, Z. Chen, YanZhao et al., “PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma,” Prenatal Diagnosis, vol. 29, no. 3, pp. 217–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Thomas, R. Sinville, S. Sutton et al., “Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA,” Electrophoresis, vol. 25, pp. 1668–1677, 2004. View at Google Scholar
  20. Y. Shi, Z. Li, Q. Xu et al., “Common variants on 8p12 and 1q24.2 confer risk of schizophrenia,” Nature Genetics, vol. 43, no. 12, pp. 1224–1227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Y. Shi and L. He, “SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci,” Cell Research, vol. 15, no. 2, pp. 97-98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Li, Z. Zhang, Z. He et al., “A partition-ligation-combination-subdivision em algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn),” Cell Research, vol. 19, no. 4, pp. 519–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. X.-Y. Xin, Y.-Y. Song, J.-F. Ma et al., “Gene polymorphisms and risk of adult early-onset ischemic stroke: A meta-analysis,” Thrombosis Research, vol. 124, no. 5, pp. 619–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H.-F. Lin, Y.-C. Liao, C.-W. Liou, C.-K. Liu, and S.-H. H. Juo, “The phosphodiesterase 4D gene for early onset ischemic stroke among normotensive patients [13],” Journal of Thrombosis and Haemostasis, vol. 5, no. 2, pp. 436–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Olsson, K. Jood, C. Blomstrand, and C. Jern, “Genetic variation on chromosome 9p21 shows association with the ischaemic stroke subtype large-vessel disease in a Swedish sample aged </= 70,” European journal of neurology, vol. 18, pp. 365–367, 2011. View at Google Scholar
  26. F. Ferraro, X.-M. Ma, J. A. Sobota, B. A. Eipper, and R. E. Mains, “Kalirin/Trio Rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation,” Molecular Biology of the Cell, vol. 18, no. 12, pp. 4813–4825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. C. A. Rabiner, R. E. Mains, and B. A. Eipper, “Kalirin: A dual Rho guanine nucleotide exchange factor that is so much more than the sum of its many parts,” Neuroscientist, vol. 11, no. 2, pp. 148–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. X.-M. Ma, D. D. Kiraly, E. D. Gaier et al., “Kalirin-7 is required for synaptic structure and function,” Journal of Neuroscience, vol. 28, no. 47, pp. 12368–12382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Penzes, R. C. Johnson, R. Sattler et al., “The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis,” Neuron, vol. 29, no. 1, pp. 229–242, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. X.-M. Ma, J.-P. Huang, E.-J. Kim et al., “Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons,” Hippocampus, vol. 21, no. 6, pp. 661–677, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. X. M. Ma, J. Huang, Y. Wang, B. A. Eipper, and R. E. Mains, “Kalirin, a multifunctional Rho guanine nucleotide exchange factor, is necessary for maintenance of hippocampal pyramidal neuron dendrites and dendritic spines,” The Journal of Neuroscience, vol. 23, pp. 10593–10603, 2003. View at Google Scholar
  32. X.-M. Ma, Y. Wang, F. Ferraro, R. E. Mains, and B. A. Eipper, “Kalirin-7 is an essential component of both shaft and spine excitatory synapses in hippocampal interneurons,” Journal of Neuroscience, vol. 28, no. 3, pp. 711–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Xie, D. P. Srivastava, H. Photowala et al., “Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines,” Neuron, vol. 56, no. 4, pp. 640–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Beresewicz, J. E. Kowalczyk, and B. Zabłocka, “Kalirin-7, a protein enriched in postsynaptic density, is involved in ischemic signal transduction,” Neurochemical Research, vol. 33, no. 9, pp. 1789–1794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. E. A. Ratovitski, M. R. Alam, R. A. Quick et al., “Kalirin inhibition of inducible nitric-oxide synthase,” Journal of Biological Chemistry, vol. 274, no. 2, pp. 993–999, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Boucher, M. Gotthardt, W.-P. Li, R. G. W. Anderson, and J. Herz, “LRP: Role in vascular wall integrity and protection from atherosclerosis,” Science, vol. 300, no. 5617, pp. 329–332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J.-H. Wu, L. Zhang, A. C. Fanaroff et al., “G protein-coupled receptor kinase-5 attenuates atherosclerosis by regulating receptor tyrosine kinases and 7-transmembrane receptors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 2, pp. 308–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Subramanian, J. Golledge, T. Ijaz, D. Bruemmer, and A. Daugherty, “Pioglitazone-induced reductions in atherosclerosis occur via smooth muscle cell-specific interaction with PPARγ,” Circulation Research, vol. 107, no. 8, pp. 953–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Nohria, M. E. Grunert, Y. Rikitake et al., “Rho kinase inhibition improves endothelial function in human subjects with coronary artery disease,” Circulation Research, vol. 99, no. 12, pp. 1426–1432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. N. J. Bradshaw and D. J. Porteous, “DISC1-binding proteins in neural development, signalling and schizophrenia,” Neuropharmacology, vol. 62, no. 3, pp. 1230–1241, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. J. J. Hill, T. Hashimoto, and D. A. Lewis, “Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia,” Molecular Psychiatry, vol. 11, no. 6, pp. 557–566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. K.-P. Lesch, N. Timmesfeld, T. J. Renner et al., “Molecular genetics of adult ADHD: Converging evidence from genome-wide association and extended pedigree linkage studies,” Journal of Neural Transmission, vol. 115, no. 11, pp. 1573–1585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Dang, Z. Wang, R. Zhang et al., “KALRN Rare and Common Variants and Susceptibility to Ischemic Stroke in Chinese Han Population,” NeuroMolecular Medicine, vol. 17, no. 3, pp. 241–250, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Krug, H. Manso, L. Gouveia et al., “Kalirin: A novel genetic risk factor for ischemic stroke,” Human Genetics, vol. 127, no. 5, pp. 513–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Olsson, K. Jood, O. Melander et al., “Lack of association between genetic variations in the KALRN region and ischemic stroke,” Clinical Biochemistry, vol. 44, no. 12, pp. 1018–1020, 2011. View at Publisher · View at Google Scholar · View at Scopus