Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 7479523, 15 pages
https://doi.org/10.1155/2017/7479523
Research Article

Genome-Wide Analysis of mRNA and Long Noncoding RNA Profiles in Chronic Actinic Dermatitis

1Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
2Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China

Correspondence should be addressed to Li He; moc.361@3662ileh

Received 2 May 2017; Revised 11 August 2017; Accepted 28 September 2017; Published 14 November 2017

Academic Editor: Konstantinos Papatheodorou

Copyright © 2017 Dongyun Lei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Y. Paek and H. W. Lim, “Chronic Actinic Dermatitis,” Dermatologic Clinics, vol. 32, no. 3, pp. 355–361, 2014. View at Publisher · View at Google Scholar
  2. J. E. Wolverton, N. A. Soter, and D. E. Cohen, “The natural history of chronic actinic dermatitis: An analysis at a single institution in the United States,” Dermatitis, vol. 25, no. 1, pp. 27–31, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. Gonzalez, N. A. Soter, and D. E. Cohen, “Positive patch- and photopatch-test reactions to methylene bis-benzotriazolyl tetramethylbutylphenol in patients with both atopic dermatitis and chronic actinic dermatitis,” Dermatitis, vol. 22, no. 2, pp. 106–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nakamura, M. Henderson, and G. Jacobsen, “Comparison of photodermatoses in African-Americans and Caucasians: a follow-up study. Photodermatology,” photoimmunology photomedicine, vol. 30, no. 5, p. 231, 2014. View at Publisher · View at Google Scholar
  5. K. Sugita, T. Shimauchi, and Y. Tokura, “Chronic actinic dermatitis associated with adult T-cell leukemia,” Journal of the American Academy of Dermatology, vol. 52, no. 2, pp. S38–S40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Jong, A. Finlay, A. Pearse et al., “The quality of life of 790 patients with photodermatoses,” British Journal of Dermatology, vol. 159, no. 1, pp. 192–197, 2008. View at Publisher · View at Google Scholar
  7. H. Du P. Menagé, N. K. Sattar, D. O. Haskard, J. L. M. Hawk, and S. M. Breathnach, “A study of the kinetics and pattern of E-selectin, VCAM-1 and ICAM-1 expression in chronic actinic dermatitis,” British Journal of Dermatology, vol. 134, no. 2, pp. 262–268, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. C. B. Van de Pas, D. A. Kelly, A. R. Young, J. L. Hawk, S. L. Walker, and P. T. Seed, “Ultraviolet-radiation-induced erythema and suppression of contact hypersensitivity responses in patients with polymorphic light eruption,” Journal of Investigative Dermatology, vol. 122, no. 2, pp. 295–299, 2004. View at Publisher · View at Google Scholar
  9. R. Ahn, R. Gupta, K. Lai, N. Chopra, S. T. Arron, and W. Liao, “Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs,” BMC Genomics, vol. 17, no. 1, 2016. View at Publisher · View at Google Scholar
  10. Y. Wei and X. Zhang, “Transcriptome analysis of distinct long non-coding RNA transcriptional fingerprints in lung adenocarcinoma and squamous cell carcinoma,” Tumor Biology, vol. 37, no. 12, pp. 16275–16285, 2016. View at Publisher · View at Google Scholar
  11. M. Sand, F. G. Bechara, D. Sand et al., “Long-noncoding RNAs in basal cell carcinoma,” Tumor Biology, vol. 37, no. 8, pp. 10595–10608, 2016. View at Publisher · View at Google Scholar
  12. W. Wang, Z. Gao, H. Wang et al., “Transcriptome analysis reveals distinct gene expression profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps,” Scientific Reports, vol. 6, Article ID 26604, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-Q. Pan, Y.-Q. Zhang, J.-H. Wang, P. Xu, and W. Wang, “LncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia,” International Journal of Molecular Medicine, vol. 39, no. 3, pp. 663–671, 2017. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Shi, M. Sun, H. Liu, Y. Yao, and Y. Song, “Long non-coding RNAs: a new frontier in the study of human diseases,” Cancer Letters, vol. 339, no. 2, pp. 159–166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Jia, M. Osak, G. K. Bogu, L. W. Stanton, R. Johnson, and L. Lipovich, “Genome-wide computational identification and manual annotation of human long noncoding RNA genes,” RNA, vol. 16, no. 8, pp. 1478–1487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Qiu, Y. Xu, X. Yang et al., “CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer,” Tumor Biology, vol. 35, no. 6, pp. 5375–5380, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Lu, Y. Liu, W. Fu et al., “Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling,” The FASEB Journal, vol. 31, no. 3, pp. 954–964, 2017. View at Publisher · View at Google Scholar
  18. X. Mao, Z. Su, and A. K. Mookhtiar, “Long non-coding RNA: A versatile regulator of the nuclear factor-κB signalling circuit,” The Journal of Immunology, vol. 150, no. 4, pp. 379–388, 2017. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhang, A. Zhang, Y. Wang et al., “New insights into the roles of ncRNA in the STAT3 pathway,” Future Oncology, vol. 8, no. 6, pp. 723–730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, article R25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Trapnell, B. A. Williams, G. Pertea et al., “Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation,” Nature Biotechnology, vol. 28, no. 5, pp. 511–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Sun, H. Luo, D. Bu et al., “Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts,” Nucleic Acids Research, vol. 41, no. 17, article e166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Kong, Y. Zhang, Z.-Q. Ye et al., “CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine,” Nucleic Acids Research, vol. 35, no. 2, pp. W345–W349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. F. Lin, I. Jungreis, and M. Kellis, “PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions,” Bioinformatics, vol. 27, no. 13, Article ID btr209, pp. i275–i282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Siepel, G. Bejerano, J. S. Pedersen et al., “Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes,” Genome Research, vol. 15, no. 8, pp. 1034–1050, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Fatica and I. Bozzoni, “Long non-coding RNAs: new players in cell differentiation and development,” Nature Reviews Genetics, vol. 15, no. 1, pp. 7–21, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Ren, G. Wang, L. Chen et al., “Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus),” BMC Genomics, vol. 17, no. 1, article no. 67, 2016. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kondo and K. Nishioka, “Hypersensitivity of skin fibroblasts from patients with chronic actinic dermatitis to ultraviolet B (UVB), UVA and superoxide radical,” Photodermatology, Photoimmunology & Photomedicine, vol. 8, no. 5, pp. 212–217, 1991. View at Google Scholar · View at Scopus
  29. U. A. Ørom, T. Derrien, M. Beringer et al., “Long noncoding RNAs with enhancer-like function in human cells,” Cell, vol. 143, no. 1, pp. 46–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. Dawe, I. K. Crombie, and J. Ferguson, “The natural history of chronic actinic dermatitis,” JAMA Dermatology, vol. 136, no. 10, pp. 1215–1220, 2000. View at Google Scholar · View at Scopus
  31. C. Casoli, E. Pilotti, and U. Bertazzoni, “Molecular and cellular interactions of HIV-1/HTLV coinfection and impact on AIDS progression,” AIDS Reviews, vol. 9, no. 3, pp. 140–149, 2007. View at Google Scholar · View at Scopus
  32. A. W. Tan, K. S. Lim, C. Theng et al., “Chronic actinic dermatitis in Asian skin: a Singaporean experience. Photodermatology,” photoimmunology and photomedicine, vol. 27, no. 4, pp. 172–175, 2011. View at Google Scholar
  33. M. Guttman, M. Garber, J. Z. Levin et al., “Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs,” Nature Biotechnology, vol. 28, no. 5, pp. 503–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. V. R. Paralkar, T. Mishra, J. Luan et al., “Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development,” Blood, vol. 123, no. 12, pp. 1927–1937, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Pauli, E. Valen, M. F. Lin et al., “Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis,” Genome Research, vol. 22, no. 3, pp. 577–591, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S.-W. Kim, K. Ramasamy, H. Bouamar, A.-P. Lin, D. Jiang, and R. C. T. Aguiar, “MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20),” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 109, no. 20, pp. 7865–7870, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Gui, Y. Yue, R. Chen, W. Xu, and S. Xiong, “A20 (TNFAIP3) Alleviates CVB3-Induced Myocarditis via Inhibiting NF-κB Signaling,” PLoS ONE, vol. 7, no. 9, Article ID e46515, 2012. View at Publisher · View at Google Scholar · View at Scopus