Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2018, Article ID 1691428, 15 pages
https://doi.org/10.1155/2018/1691428
Review Article

Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer

1Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy
2Department of Physical Sciences, Earth and Environment, University of Siena, Strada Laterina 8, 53100 Siena, Italy

Correspondence should be addressed to Lorenzo Corsi; ti.erominu@oznerol.isroc

Received 7 September 2018; Revised 14 November 2018; Accepted 22 November 2018; Published 4 December 2018

Guest Editor: Claudio Tabolacci

Copyright © 2018 Federica Pellati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Hartsel, J. Eades, B. Hickory, and A. Makriyannis, “Cannabis sativa and Hemp,” Nutraceuticals: Efficacy, Safety and Toxicity, pp. 735–754, 2016. View at Google Scholar · View at Scopus
  2. C. M. Andre, J. Hausman, and G. Guerriero, “Cannabis sativa: The Plant of the Thousand and One Molecules,” Frontiers in Plant Science, vol. 7, 2016. View at Publisher · View at Google Scholar
  3. G. Appendino, G. Chianese, and O. Taglialatela-Scafati, “Cannabinoids: Occurrence and medicinal chemistry,” Current Medicinal Chemistry, vol. 18, no. 7, pp. 1085–1099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. B. F. Thomas and M. A. ElSohly, “The analytical chemistry of Cannabis: quality assessment, assurance and regulation of medicinal marijuana and cannabinoid preparations,” Elsevier, Amsterdam, 1st edition, 2015. View at Google Scholar
  5. “European Commission, Food safety, plant variety catalogues, databases and information systems,” 2018, https://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases_en.
  6. L. O. Hanuš, S. M. Meyer, E. Muñoz, O. Taglialatela-Scafati, and G. Appendino, “Phytocannabinoids: A unified critical inventory,” Natural Product Reports, vol. 33, no. 12, pp. 1357–1392, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Brighenti, F. Pellati, M. Steinbach, D. Maran, and S. Benvenuti, “Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp),” Journal of Pharmaceutical and Biomedical Analysis, vol. 143, pp. 228–236, 2017. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Pellati, V. Brighenti, J. Sperlea, L. Marchetti, D. Bertelli, and S. Benvenuti, “New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp),” Molecules, vol. 23, no. 10, 2018. View at Publisher · View at Google Scholar
  9. M. A. ElSohly and D. Slade, “Chemical constituents of marijuana: the complex mixture of natural cannabinoids,” Life Sciences, vol. 78, no. 5, pp. 539–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. De Backer, B. Debrus, P. Lebrun et al., “Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material,” Journal of Chromatography B, vol. 877, no. 32, pp. 4115–4124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. Izzo, F. Borrelli, R. Capasso, V. Di Marzo, and R. Mechoulam, “Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb,” Trends in Pharmacological Sciences, vol. 30, no. 10, pp. 515–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Fernández-Ruiz, M. Moreno-Martet, C. Rodríguez-Cueto et al., “Prospects for cannabinoid therapies in basal ganglia disorders,” British Journal of Pharmacology, vol. 163, no. 7, pp. 1365–1378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. P. H. Alexander, “Therapeutic potential of cannabis-related drugs,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 64, pp. 157–166, 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. A. C. Campos, M. V. Fogaça, A. B. Sonego, and F. S. Guimarães, “Cannabidiol, neuroprotection and neuropsychiatric disorders,” Pharmacological Research, vol. 112, pp. 119–127, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Brenneisen, “Chemistry and analysis of phytocannabinoids and other Cannabis constituents,” in Marijuana and the Cannabinoids, M. A. ElSohly, Ed., 49, 17 pages, Marijuana and the cannabinoids, Humana Press Inc., Totowa, NJ, USA, 2007. View at Google Scholar
  16. S. Pisanti, A. M. Malfitano, E. Ciaglia et al., “Cannabidiol: State of the art and new challenges for therapeutic applications,” Pharmacology & Therapeutics, vol. 175, pp. 133–150, 2017. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Pollastro, A. Minassi, and L. G. Fresu, “Cannabis Phenolics and their Bioactivities,” Current Medicinal Chemistry, vol. 25, no. 10, pp. 1160–1185, 2018. View at Publisher · View at Google Scholar
  18. O. Werz, J. Seegers, A. M. Schaible et al., “Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase,” PharmaNutrition, vol. 2, no. 3, pp. 53–60, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Allegrone, F. Pollastro, G. Magagnini et al., “The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some Cannabis sativa Strains,” Journal of Natural Products, vol. 80, no. 3, pp. 731–734, 2017. View at Publisher · View at Google Scholar · View at Scopus
  20. S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, Inflammation, and Cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Namdar and H. Koltai, “Medical Cannabis for the treatment of inflammation,” Nat. Prod. Commun, vol. 13, pp. 249–254, 2018. View at Google Scholar
  22. K. Mackie and N. Stella, “Cannabinoid receptors and endocannabinoids: evidence for new players,” The AAPS Journal, vol. 8, no. 2, article 34, pp. E298–E306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Jean-Gilles, M. Braitch, M. L. Latif et al., “Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells,” Acta Physiol, vol. 214, pp. 63–74, 2015. View at Google Scholar
  24. K. Fijal and M. Filip, “Clinical/therapeutic approaches for cannabinoid ligands in central and peripheral nervous system diseases: Mini review,” Clinical Neuropharmacology, vol. 39, no. 2, pp. 94–101, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. K. L. Mccoy, “Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation,” Mediators of Inflammation, vol. 2016, Article ID 5831315, 18 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Nagarkatti, R. Pandey, S. A. Rieder, V. L. Hegde, and M. Nagarkatti, “Cannabinoids as novel anti-inflammatory drugs,” Future Medicinal Chemistry, vol. 1, no. 7, pp. 1333–1349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Burstein, “Cannabidiol (CBD) and its analogs: A review of their effects on inflammation,” Bioorganic & Medicinal Chemistry, vol. 23, no. 7, pp. 1377–1385, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Jamontt, A. Molleman, R. G. Pertwee, and M. E. Parsons, “The effects of 9-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis,” British Journal of Pharmacology, vol. 160, no. 3, pp. 712–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. de Filippis, G. Esposito, C. Cirillo et al., “Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis,” PLoS ONE, vol. 6, no. 12, 2011. View at Google Scholar · View at Scopus
  30. J. M. Sido, A. R. Jackson, P. S. Nagarkatti, and M. Nagarkatti, “Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation,” Journal of Molecular Medicine, vol. 94, no. 9, pp. 1039–1051, 2016. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Berdyshev, E. Boichot, M. Corbel, N. Germain, and V. Lagente, “Effects of cannabinoid receptor ligands on LPS-induced pulmonary inflammation in mice,” Life Sciences, vol. 63, no. 8, pp. 125–129, 1998. View at Google Scholar · View at Scopus
  32. M. D. Roth, J. T. Castaneda, and S. M. Kiertscher, “Exposure to Δ9-tetrahydrocannabinol impairs the differentiation of human monocyte-derived dendritic cells and their capacity for T cell activation,” Journal of Neuroimmune Pharmacology, vol. 10, no. 2, pp. 333–343, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Ngaotepprutaram, B. L. Kaplan, and N. E. Kaminski, “Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ9-tetrahydrocannabinol in human CD4+ T cells,” Toxicology and Applied Pharmacology, vol. 273, no. 1, pp. 209–218, 2013. View at Publisher · View at Google Scholar
  34. Y.-H. Chang, S. T. Lee, and W.-W. Lin, “Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids,” Journal of Cellular Biochemistry, vol. 81, no. 4, pp. 715–723, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. L. R. Ruhaak, J. Felth, P. C. Karlsson, J. J. Rafter, R. Verpoorte, and L. Bohlin, “Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa,” Biological & Pharmaceutical Bulletin, vol. 34, no. 5, pp. 774–778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. C. Shivers, C. Newton, H. Friedman, and T. W. Klein, “Δ9-tetrahydrocannabinol (THC) modulates IL-1 bioactivity in human monocyte/macrophage cell lines,” Life Sciences, vol. 54, no. 17, pp. 1281–1289, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Lombard, M. Nagarkatti, and P. S. Nagarkatti, “Targeting cannabinoid receptors to treat leukemia: Role of cross-talk between extrinsic and intrinsic pathways in Δ9- tetrahydrocannabinol (THC)-induced apoptosis of Jurkat cells,” Leukemia Research, vol. 29, no. 8, pp. 915–922, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Jia, V. L. Hegde, N. P. Singh et al., “Δ9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of bad to mitochondria,” Molecular Cancer Research, vol. 4, no. 8, pp. 549–562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Costa, M. Colleoni, S. Conti et al., “Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 369, no. 3, pp. 294–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Takeda, H. Okazaki, E. Ikeda et al., “Down-regulation of cyclooxygenase-2 (cox-2) by cannabidiolic acid in human breast cancer cells,” Journal of Toxicological Sciences, vol. 39, no. 5, pp. 711–716, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Ben-Shabat, L. O. Hanuš, G. Katzavian, and R. Gallily, “New cannabidiol derivatives: Synthesis, binding to cannabinoid receptor, and evaluation of their antiinflammatory activity,” Journal of Medicinal Chemistry, vol. 49, no. 3, pp. 1113–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Watzl, P. Scuderi, and R. R. Watson, “Marijuana components stimulate human peripheral blood mononuclear cell secretion of interferon-gamma and suppress interleukin-1 alpha in vitro,” International Journal of Immunopharmacology, vol. 13, no. 8, pp. 1091–1097, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Petrosino, R. Verde, M. Vaia, M. Allarà, T. Iuvone, and V. Di Marzo, “Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis,” The Journal of Pharmacology and Experimental Therapeutics, vol. 365, no. 3, pp. 652–663, 2018. View at Publisher · View at Google Scholar
  44. F. Borrelli, I. Fasolino, B. Romano et al., “Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease,” Biochemical Pharmacology, vol. 85, no. 9, pp. 1306–1316, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. A. A. Izzo, R. Capasso, G. Aviello et al., “Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice,” British Journal of Pharmacology, vol. 166, no. 4, pp. 1444–1460, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. M. L. Barrett, D. Gordon, and F. J. Evans, “Isolation from cannabis sativa L. of cannflavin-a novel inhibitor of prostaglandin production,” Biochemical Pharmacology, vol. 34, no. 11, pp. 2019–2024, 1985. View at Publisher · View at Google Scholar · View at Scopus
  47. W.-J. Yoon, N. H. Lee, and C.-G. Hyun, “Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages,” Journal of Oleo Science, vol. 59, no. 8, pp. 415–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Gertsch, M. Leonti, S. Raduner et al., “Beta-caryophyllene is a dietary cannabinoid,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 105, no. 26, pp. 9099–9104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. N. V. DiPatrizio, “Endocannabinoids in the Gut,” Cannabis and Cannabinoid Research, vol. 1, no. 1, pp. 67–77, 2016. View at Publisher · View at Google Scholar
  50. A. Alhamoruni, A. C. Lee, K. L. Wright, M. Larvin, and S. E. O'Sullivan, “Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability,” The Journal of Pharmacology and Experimental Therapeutics, vol. 335, no. 1, pp. 92–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Alhamoruni, K. L. Wright, M. Larvin, and S. E. O'Sullivan, “Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability,” British Journal of Pharmacology, vol. 165, no. 8, pp. 2598–2610, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. D. G. Couch, C. Tasker, E. Theophilidou, J. N. Lund, and S. E. O'Sullivan, “Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon,” Clinical Science, vol. 131, no. 21, pp. 2611–2626, 2017. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Gigli, L. Seguella, M. Pesce et al., “Cannabidiol restores intestinal barrier dysfunction and inhibits the apoptotic process induced by Clostridium difficile toxin A in Caco-2 cells,” United European Gastroenterology Journal, vol. 5, no. 8, pp. 1108–1115, 2017. View at Publisher · View at Google Scholar · View at Scopus
  54. R.-V. Kalaydina, B. Qorri, and M. R. Szewczuk, “Preventing negative shifts in gut microbiota with Cannabis therapy: implications for colorectal cancer,” Adv. Res. Gastroentero. Hepatol, vol. 7, pp. 1–5, 2017. View at Google Scholar
  55. K. Mackie, Y. Lai, R. Westenbroek, and R. Mitchell, “Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor,” The Journal of Neuroscience, vol. 15, no. 10, pp. 6552–6561, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Maresz, G. Pryce, E. D. Ponomarev et al., “Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells,” Nature Medicine, vol. 13, no. 4, pp. 492–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. W. Klein, B. Lane, C. A. Newton, and H. Friedman, “The cannabinoid system and cytokine network,” Proceedings of the Society for Experimental Biology and Medicine, vol. 225, no. 1, pp. 1–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Thors, A. Bergh, E. Persson et al., “Fatty acid amide hydrolase in prostate cancer: Association with disease severity and outcome, CB1 receptor expression and regulation by IL-4,” PLoS ONE, vol. 5, no. 8, Article ID e12275, 2010. View at Google Scholar · View at Scopus
  59. M. Maccarrone, H. Valensise, M. Bari, N. Lazzarin, C. Romanini, and A. Finazzi-Agrò, “Progesterone up-regulates anandamide hydrolase in human lymphocytes: Role of cytokines and implications for fertility,” The Journal of Immunology, vol. 166, no. 12, pp. 7183–7189, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Rubio-Araiz, Á. Arévalo-Martín, O. Gómez-Torres et al., “The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation,” Molecular and Cellular Neuroscience, vol. 38, no. 3, pp. 374–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Rajesh, P. Mukhopadhyay, S. Bátkai et al., “CB2-receptor stimulation attenuates TNF-α-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 293, no. 4, pp. H2210–H2218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Vivekanantham, S. Shah, R. Dewji, A. Dewji, C. Khatri, and R. Ologunde, “Neuroinflammation in Parkinson's disease: Role in neurodegeneration and tissue repair,” International Journal of Neuroscience, vol. 125, no. 10, pp. 717–725, 2015. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Koudriavtseva and C. Mainero, “Neuroinflammation, neurodegeneration and regeneration in multiple sclerosis: Intercorrelated manifestations of the immune response,” Neural Regeneration Research, vol. 11, no. 11, pp. 1727–1730, 2016. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Gordon and T. M. Woodruff, “Neuroinflammation as a therapeutic target in neurodegenerative diseases,” in Disease-modifying targets in neurodegenerative disorders, V. Baekelandt and E. Lobbestael, Eds., pp. 49–80, Academic Press, Cambridge, 2017. View at Google Scholar
  65. M. T. Heneka, M. J. Carson, J. El. Khoury et al., “Neuroinflammation in Alzheimer's disease,” The Lancet Neurology, vol. 14, no. 4, pp. 388–405, 2015. View at Publisher · View at Google Scholar
  66. Géraldine Gelders, Veerle Baekelandt, and Anke Van der Perren, “Linking Neuroinflammation and Neurodegeneration in Parkinson’s Disease,” Journal of Immunology Research, vol. 2018, Article ID 4784268, 12 pages, 2018. View at Publisher · View at Google Scholar
  67. E. C. Hirsch, S. Vyas, and S. Hunot, “Neuroinflammation in Parkinson's disease,” Parkinsonism & Related Disorders, vol. 18, no. 1, pp. S210–S212, 2012. View at Google Scholar · View at Scopus
  68. T. Chitnis, “The Role of CD4 T Cells in the Pathogenesis of Multiple Sclerosis,” International Review of Neurobiology, vol. 79, pp. 43–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. B. J. Kaskow and C. Baecher-Allan, “Effector T Cells in Multiple Sclerosis,” Cold Spring Harbor Perspectives in Medicine, vol. 8, no. 4, p. a029025, 2018. View at Publisher · View at Google Scholar
  70. V. Borgonetti, P. Governa, M. Montopoli, and M. Biagi, “Cannabis sativa L. constituents and their role in neuroinflammation,” Curr. Bioact. Compd, 2018. View at Publisher · View at Google Scholar
  71. E. Janefjord, J. L. V. Mååg, B. S. Harvey, and S. D. Smid, “Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro,” Cellular and Molecular Neurobiology, vol. 34, no. 1, pp. 31–42, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Kozela, M. Pietr, A. Juknat, N. Rimmerman, R. Levy, and Z. Vogel, “Cannabinoids delta(9)-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-kappaB and interferon-beta/STAT proinflammatory pathways in BV-2 microglial cells,” The Journal of Biological Chemistry, vol. 285, no. 3, pp. 1616–1626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. S. A. Hunter and S. H. Burstein, “Receptor mediation in cannabinoid stimulated arachidonic acid mobilization and anandamide synthesis,” Life Sciences, vol. 60, no. 18, pp. 1563–1573, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Solinas, P. Massi, V. Cinquina et al., “Cannabidiol, a Non-Psychoactive Cannabinoid Compound, Inhibits Proliferation and Invasion in U87-MG and T98G Glioma Cells through a Multitarget Effect,” PLoS ONE, vol. 8, no. 10, Article ID e76918, 2013. View at Google Scholar · View at Scopus
  75. A. M. Martín-Moreno, D. Reigada, B. G. Ramírez et al., “Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: Relevance to alzheimer's disease,” Molecular Pharmacology, vol. 79, no. 6, pp. 964–973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Esposito, C. Scuderi, M. Valenza et al., “Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement,” PLoS ONE, vol. 6, no. 12, Article ID e28668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Dirikoc, S. A. Priola, M. Marella, N. Zsürger, and J. Chabry, “Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity,” The Journal of Neuroscience, vol. 27, no. 36, pp. 9537–9544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Corsi, F. Pellati, V. Brighenti, N. Plessi, and S. Benvenuti, “Chemical composition and in vitro neuroprotective activity of fibre-type Cannabis sativa L. (hemp),” Current Bioactive Compounds, vol. 14, 2018. View at Publisher · View at Google Scholar
  79. A. Gugliandolo, F. Pollastro, G. Grassi, P. Bramanti, and E. Mazzon, “In Vitro Model of Neuroinflammation: Efficacy of Cannabigerol, a Non-Psychoactive Cannabinoid,” International Journal of Molecular Sciences, vol. 19, no. 7, article E1992, 2018. View at Publisher · View at Google Scholar
  80. K. Guo, X. Mou, J. Huang, N. Xiong, and H. Li, “Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia,” Journal of Molecular Neuroscience, vol. 54, no. 1, pp. 41–48, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Watt and T. Karl, “In vivo evidence for therapeutic properties of cannabidiol (CBD) for Alzheimers Disease,” Front. Pharmacol, vol. 8, article 20, 2017. View at Google Scholar
  82. C. Scuderi, L. Steardo, and G. Esposito, “Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement,” Phytotherapy Research, vol. 28, no. 7, pp. 1007–1013, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Hughes and C. E. Herron, “Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer’s Disease,” Neurochemical Research, 2018. View at Publisher · View at Google Scholar
  84. K. Kundu and Y. J. Surh, “Inflammation: gearing the journey to cancer,” Mutat. Res, vol. 659, pp. 15–30, 2008. View at Google Scholar
  85. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. H. F. Dvorak, “Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing,” The New England Journal of Medicine, vol. 315, no. 26, pp. 1650–1659, 1986. View at Publisher · View at Google Scholar · View at Scopus
  87. S. M. Crusz and F. R. Balkwill, “Inflammation and cancer: advances and new agents,” Nature Reviews Clinical Oncology, vol. 12, pp. 584–596, 2015. View at Publisher · View at Google Scholar
  88. S. I. Grivennikov and M. Karin, “Inflammation and oncogenesis: a vicious connection,” Curr. Opin. Genet. Dev, vol. 20, pp. 65–71, 2010. View at Publisher · View at Google Scholar
  89. K. Tanaka, I. Babic, D. Nathanson et al., “Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance,” Cancer Discovery, vol. 1, no. 6, pp. 524–538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Berasain, M. J. Perugorria, M. U. Latasa et al., “The Epidermal Growth Factor Receptor: A Link Between Inflammation and Liver Cancer,” Experimental Biology and Medicine, vol. 234, no. 7, pp. 713–725, 2009. View at Publisher · View at Google Scholar
  91. M. Elbaz, M. W. Nasser, J. Ravi et al., “Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of Cannabidiol in breast cancer,” Molecular Oncology, vol. 9, no. 4, pp. 906–919, 2015. View at Publisher · View at Google Scholar
  92. V. Chiurchiù, M. Lanuti, M. De Bardi, L. Battistini, and M. Maccarrone, “The differential characterization of GPR55 receptor in human peripheral blood reveals a distinctive expression in monocytes and NK cells and a proinflammatory role in these innate cells,” International Immunology, vol. 27, no. 3, pp. 153–160, 2015. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Wang, H. Wang, W. Ning, M. G. Backlund, S. K. Dey, and R. N. DuBois, “Loss of cannabinoid receptor 1 accelerates intestinal tumor growth,” Cancer Research, vol. 68, no. 15, pp. 6468–6476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Mukhopadhyay, K. Schuebel, P. Mukhopadhyay et al., “Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms,” Hepatology, vol. 61, no. 5, pp. 1615–1626, 2015. View at Publisher · View at Google Scholar · View at Scopus
  95. A. H. Benz, C. Renné, E. Maronde et al., “Expression and functional relevance of cannabinoid receptor 1 in hodgkin lymphoma,” PLoS ONE, vol. 8, no. 12, Article ID e81675, 2013. View at Google Scholar · View at Scopus
  96. E. M. Messalli, F. Grauso, R. Luise, A. Angelini, and R. Rossiello, “Cannabinoid receptor type 1 immunoreactivity and disease severity in human epithelial ovarian tumors,” American Journal of Obstetrics & Gynecology, vol. 211, no. 3, pp. 234–e6, 2014. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Pérez-Gómez, C. Andradas, and S. Blasco-Benito, “Role of Cannabinoid Receptor CB2 in HER2 Pro-oncogenic Signaling in Breast Cancer,” JNCI: Journal of the National Cancer Institute, vol. 107, no. 6, 2015. View at Publisher · View at Google Scholar
  98. C. A. Dumitru, I. E. Sandalcioglu, and M. Karsak, “Cannabinoids in Glioblastoma Therapy: New Applications for Old Drugs,” Frontiers in Molecular Neuroscience, vol. 11, article 159, 2018. View at Publisher · View at Google Scholar
  99. C. K. Jung, W. K. Kang, J. M. Park et al., “Expression of the cannabinoid type I receptor and prognosis following surgery in colorectal cancer,” Oncology Letters, vol. 5, no. 3, pp. 870–876, 2013. View at Publisher · View at Google Scholar · View at Scopus
  100. F. K. Engels, F. A. de Jong, R. H. J. Mathijssen, J. A. Erkens, R. M. Herings, and J. Verweij, “Medicinal cannabis in oncology,” European Journal of Cancer, vol. 43, no. 18, pp. 2638–2644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. A. E. Munson, L. S. Harris, M. A. Friedman, W. L. Dewey, and R. A. Carchman, “Antineoplastic Activity of Cannabinoids2,” JNCI: Journal of the National Cancer Institute, vol. 55, no. 3, pp. 597–602, 1975. View at Publisher · View at Google Scholar
  102. I. Galve-Roperh, C. Sánchez, M. L. Cortés, T. G. Del Pulgar, M. Izquierdo, and M. Guzmán, “Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation,” Nature Medicine, vol. 6, no. 3, pp. 313–319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. C. Sánchez, M. L. de Ceballos, T. Gomez del Pulgar et al., “Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor,” Cancer Res, vol. 61, pp. 5784–5789, 2001. View at Google Scholar
  104. M. L. Casanova, C. Blázquez, J. Martínez-Palacio et al., “Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors,” The Journal of Clinical Investigation, vol. 111, no. 1, pp. 43–50, 2003. View at Publisher · View at Google Scholar
  105. C. Blázquez, A. Carracedo, L. Barrado et al., “Cannabinoid receptors as novel targets for the treatment of melanoma.,” The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol. 20, no. 14, pp. 2633–2635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Carracedo, M. Gironella, M. Lorente et al., “Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes,” Cancer Research, vol. 66, no. 13, pp. 6748–6755, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Cianchi, L. Papucci, N. Schiavone et al., “Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells,” Clinical Cancer Research, vol. 14, no. 23, pp. 7691–7700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Bifulco and V. Di Marzo, “Targeting the endocannabinoid system in cancer therapy: A call for further research,” Nature Medicine, vol. 8, no. 6, pp. 547–550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Bifulco, C. Laezza, S. Pisanti, and P. Gazzerro, “Cannabinoids and cancer: Pros and cons of an antitumour strategy,” British Journal of Pharmacology, vol. 148, no. 2, pp. 123–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. N. Freimuth, R. Ramer, and B. Hinz, “Antitumorigenic effects of cannabinoids beyond apoptosis,” The Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 2, pp. 336–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Sawzdargo, T. Nguyen, D. K. Lee et al., “Identification and cloning of three novel human G protein-coupled receptor genes GPR52, ΨGPR53 and GPR55: GPR55 is extensively expressed in human brain,” Brain Research, vol. 64, no. 2, pp. 193–198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Fredriksson, M. C. Lagerström, L.-G. Lundin, and H. B. Schiöth, “The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints,” Molecular Pharmacology, vol. 63, no. 6, pp. 1256–1272, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Leyva-Illades and S. DeMorrow, “Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management,” Cancer Management and Research, vol. 5, no. 1, pp. 147–155, 2013. View at Google Scholar · View at Scopus
  114. C. M. Henstridge, N. A. Balenga, R. Schröder et al., “GPR55 ligands promote receptor coupling to multiple signalling pathways,” British Journal of Pharmacology, vol. 160, no. 3, pp. 604–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. J. E. Lauckner, J. B. Jensen, H.-Y. Chen, H.-C. Lu, B. Hille, and K. Mackie, “GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 105, no. 7, pp. 2699–2704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Oka, S. Kimura, T. Toshida, R. Ota, A. Yamashita, and T. Sugiura, “Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells,” The Journal of Biochemistry, vol. 147, no. 5, pp. 671–678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Andradas, M. M. Caffarel, E. Pérez-Gómez et al., “The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK,” Oncogene, vol. 30, no. 2, pp. 245–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Pérez-Gómez, C. Andradas, J. M. Flores et al., “The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas,” Oncogene, vol. 32, no. 20, pp. 2534–2542, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. E. Ryberg, N. Larsson, S. Sjögren et al., “The orphan receptor GPR55 is a novel cannabinoid receptor,” British Journal of Pharmacology, vol. 152, no. 7, pp. 1092–1101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Kapur, P. Zhao, H. Sharir et al., “Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands,” The Journal of Biological Chemistry, vol. 284, no. 43, pp. 29817–29827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Shrivastava, P. M. Kuzontkoski, J. E. Groopman, and A. Prasad, “Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy,” Molecular Cancer Therapeutics, vol. 10, no. 7, pp. 1161–1172, 2011. View at Publisher · View at Google Scholar
  122. X. Zhang, Y. Maor, J. F. Wang, G. Kunos, and J. E. Groopman, “Endocannabinoid-like N-arachidonoyl serine is a novel pro-angiogenic mediator,” British Journal of Pharmacology, vol. 160, no. 7, pp. 1583–1594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Santoni, V. Farfariello, and C. Amantini, “TRPV Channels in Tumor Growth and Progression,” in Transient Receptor Potential Channels, vol. 704 of Advances in Experimental Medicine and Biology, pp. 947–967, Springer Netherlands, Dordrecht, 2011. View at Publisher · View at Google Scholar
  124. R. Vennekens, G. Owsianik, and B. Nilius, “Vanilloid transient receptor potential cation channels: An overview,” Current Pharmaceutical Design, vol. 14, no. 1, pp. 18–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Perálvarez-Marín, P. Doñate-Macian, and R. Gaudet, “What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel?” FEBS Journal, vol. 280, no. 21, pp. 5471–5487, 2013. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Bisogno, L. Hanuš, L. De Petrocellis et al., “Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide,” British Journal of Pharmacology, vol. 134, no. 4, pp. 845–852, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Qin, M. P. Neeper, Y. Liu, T. L. Hutchinson, M. L. Lubin, and C. M. Flores, “TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root Ganglion neurons,” The Journal of Neuroscience, vol. 28, no. 24, pp. 6231–6238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Ligresti, A. S. Moriello, K. Starowicz et al., “Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma,” The Journal of Pharmacology and Experimental Therapeutics, vol. 318, no. 3, pp. 1375–1387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Flourakis and N. Prevarskaya, “Insights into Ca2+ homeostasis of advanced prostate cancer cells,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1793, no. 6, pp. 1105–1109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. A. M. Bode, Y.-Y. Cho, D. Zheng et al., “Transient receptor potential type vanilloid 1 suppresses skin carcinogenesis,” Cancer Research, vol. 69, no. 3, pp. 905–913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. M. A. Rochester, N. Patel, B. W. Turney et al., “The type 1 insulin-like growth factor receptor is over-expressed in bladder cancer,” BJU International, vol. 100, no. 6, pp. 1396–1401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Amantini, P. Ballarini, S. Caprodossi et al., “Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner,” Carcinogenesis, vol. 30, no. 8, pp. 1320–1329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. J. C. Arnold, P. Hone, M. L. Holland, and J. D. Allen, “CB2and TRPV1 receptors mediate cannabinoid actions on MDR1 expression in multidrug resistant cells,” Pharmacological Reports, vol. 64, no. 3, pp. 751–757, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Nabissi, M. B. Morelli, M. Santoni, and G. Santoni, “Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents,” Carcinogenesis, vol. 34, no. 1, pp. 48–57, 2013. View at Publisher · View at Google Scholar · View at Scopus
  135. M. B. Morelli, M. Nabissi, C. Amantini et al., “The transient receptor potential vanilloid-2 cation channel impairs glioblastoma stem-like cell proliferation and promotes differentiation,” International Journal of Cancer, vol. 131, no. 7, pp. E1067–E1077, 2012. View at Publisher · View at Google Scholar · View at Scopus
  136. S. D. McAllister, R. Murase, R. T. Christian et al., “Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis,” Breast Cancer Research and Treatment, vol. 129, no. 1, pp. 37–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Perk, A. Iavarone, and R. Benezra, “Id family of helix-loop-helix proteins in cancer,” Nature Reviews Cancer, vol. 5, no. 8, pp. 603–614, 2005. View at Publisher · View at Google Scholar · View at Scopus