Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2018 (2018), Article ID 2370438, 10 pages
Research Article

Elucidation on Predominant Pathways Involved in the Differentiation and Mineralization of Odontoblast-Like Cells by Selective Blockade of Mitogen-Activated Protein Kinases

1Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
2Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan

Correspondence should be addressed to Jia Tang

Received 1 November 2017; Revised 10 January 2018; Accepted 21 January 2018; Published 20 February 2018

Academic Editor: Hom-Lay Wang

Copyright © 2018 Jia Tang and Takashi Saito. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Aim. To analyze the effect of three mitogen-activated protein kinase (MAPK) inhibitors, namely, SB202190 (p38 inhibitor), SP600125 (JNK inhibitor), and PD98059 (ERK inhibitor) in Dex-stimulated MDPC-23 cell differentiation and mineralization. Methods. Experiment was divided into five groups, control (cells without Dex and inhibitors treatment), Dex (cells with Dex treatment but without inhibitors), Dex + SB202190, Dex + SP600125, and Dex + PD98059. Cell differentiation was assessed by alkaline phosphatase (ALP) activity assay and real time RT-PCR. Cell mineralization was investigated by alizarin red staining. Results. Exposure to SB202190 (20 μM) significantly decreased the mineral deposition in Dex-treated cells as demonstrated by alizarin red staining. Treatment of SP600125 (20 μM) attenuated the mineralization as well, albeit at a lower degree as compared to SB202190 (20 μM). Similarly, SB202190 (20 μM) completely abrogated the ALP activity stimulated by Dex at six days in culture, while no changes were observed with regard to ALP activity in SP600125 (20 μM) and PD98059 (20 μM) treated cells. The upregulation of bone sialoprotein (BSP), ALP, and osteopontin (OPN) in Dex challenged cells was completely inhibited by SB202190. Conclusion. Blockade of p38-MAPK signaling pathway resulted in significant inhibition of ALP activity, mineralization, and downregulation of osteogenic markers. The data implicated that p38 signaling pathway plays a critical role in the regulation of MDPC-23 cells differentiation and mineralization.