BioMed Research International: Physiology The latest articles from Hindawi © 2017 , Hindawi Limited . All rights reserved. The Effect of a 12-Week Health Training Program on Selected Anthropometric and Biochemical Variables in Middle-Aged Women Mon, 09 Oct 2017 00:00:00 +0000 Regular moderate physical activity positively affects health, fitness, and body composition; it regulates the pro- and anti-inflammatory cytokines levels. Vitamin D plays an important regulatory role; its adequate levels correlate with low values of inflammation markers and an increase in muscle strength and fitness in exercising people. The study’s aim was to evaluate changes in somatic variables, oxidative stress, and inflammation markers, as well as blood calcidiol concentration in middle-aged healthy women after 12 weeks of aerobics classes—endurance exercises, including choreographic sequences, aiming to improve fitness and motor coordination. The training led to a significant reduction of body mass and fat tissue; it induced an increase in lean body mass. After the 12-week training program, plasma antioxidant status increased (0.65 ± 0.21, ) and the concentration of lipid peroxidation products decreased (0.07 ± 0.02, ). A significant increase in plasma antioxidant status associated with training could have reduced the level of proinflammatory interleukin as indicated by a positive correlation between these variables ( = 0.64, ). The study proved that a 12-week health training program in physically inactive middle-aged women might provide improvements in their anthropometric parameters and selected biochemical indicators. Wanda Pilch, Łukasz Tota, Ewa Sadowska-Krępa, Anna Piotrowska, Magdalena Kępińska, Tomasz Pałka, and Adam Maszczyk Copyright © 2017 Wanda Pilch et al. All rights reserved. The Russians Are the Fastest in Marathon Cross-Country Skiing: The “Engadin Ski Marathon” Mon, 21 Aug 2017 00:00:00 +0000 It is well known that athletes from a specific region or country are dominating certain sports disciplines such as marathon running or Ironman triathlon; however, little relevant information exists on cross-country skiing. Therefore, the aim of the present study was to investigate the aspect of region and nationality in one of the largest cross-country skiing marathons in Europe, the “Engadin Ski Marathon.” All athletes () who finished the “Engadin Ski Marathon” between 1998 and 2016 were considered. More than two-thirds of the finishers (72.5% in women and 69.6% in men) were Swiss skiers, followed by German, Italian, and French athletes in both sexes. Most of the Swiss finishers were from Canton of Zurich (20.5%), Grisons (19.2%), and Berne (10.3%). Regarding performance, the Russians were the fastest and the British the slowest. Considering local athletes, finishers from Canton of Uri and Glarus were the fastest and those from Canton of Geneva and Basel the slowest. Based on the findings of the present study, it was concluded that local athletes were not the fastest in the “Engadin Ski Marathon.” Future studies need to investigate other cross-country skiing races in order to find the nationalities and regions of the fastest cross-country skiers. Pantelis Theodoros Nikolaidis, Jan Heller, and Beat Knechtle Copyright © 2017 Pantelis Theodoros Nikolaidis et al. All rights reserved. Leaf Senescence, Root Morphology, and Seed Yield of Winter Oilseed Rape (Brassica napus L.) at Varying Plant Densities Thu, 03 Aug 2017 00:00:00 +0000 In this study, the yield and yield components were studied using a conventional variety Zhongshuang 11 (ZS 11) and a hybrid variety Zhongyouza 12 (ZYZ 12) at varying plant densities. The increase in plant density led to an initial increase in seed yield and pod numbers per unit area, followed by a decrease. The optimal plant density was 58.5 × 104 plants ha−1 in both ZS 11 and ZYZ 12. The further researches on physiological traits showed a rapid decrease in the green leaf area index (GLAI) and chlorophyll content and a remarkable increase in malondialdehyde content in high plant density (HPD) population than did the low plant density (LPD) population, which indicated the rapid leaf senescence. However, HPD had higher values in terms of pod area index (PAI), pod photosynthesis, and radiation use efficiency (RUE) after peak anthesis. A significantly higher level of dry matter accumulation and nitrogen utilization efficiency were observed, which resulted in higher yield. HPD resulted in a rapid decrease in root morphological parameters (root length, root tips, root surface area, and root volume). These results suggested that increasing the plant density within a certain range was a promising option for high seed yield in winter rapeseed in China. Ming Li, Muhammad Shahbaz Naeem, Shafaqat Ali, Liyan Zhang, Lixin Liu, Ni Ma, and Chunlei Zhang Copyright © 2017 Ming Li et al. All rights reserved. Time Evolution of Sublingual Microcirculatory Changes in Recreational Marathon Runners Sun, 30 Jul 2017 07:31:04 +0000 We aimed to evaluate changes in sublingual microcirculation induced by a marathon race. Thirteen healthy male controls and 13 male marathon runners volunteered for the study. We performed sublingual microcirculation, using a Cytocam-IDF device (Braedius Medical, Huizen, Netherlands), and systemic hemodynamic measurements four times: 24 hours prior to their participation in the Kaunas Marathon (distance: 41.2 km), directly after finishing the marathon, 24 hours after the marathon, and one week after the marathon. The marathon runners exhibited a higher functional capillary density (FCD) and total vascular density of small vessels at the first visit compared with the controls. Overall, we did not find any changes in sublingual microcirculation of the marathon runners at any of the other visits. However, in a subgroup of marathon runners with a decreased FCD compared to the subgroup with increased FCD, the subgroup with decreased FCD had shorter running time ( versus  min, ), ingested less fluids ( versus  mL, ) during the race, and lost much more weight ( versus  kg, ). Recreational marathon running is not associated with an alteration of sublingual microcirculation. However, faster running and dehydration may be crucial for further impairing microcirculation. Andrius Pranskunas, Justina Arstikyte, Zivile Pranskuniene, Jurga Bernatoniene, Inga Kiudulaite, Egle Vaitkaitiene, Dinas Vaitkaitis, and Marius Brazaitis Copyright © 2017 Andrius Pranskunas et al. All rights reserved. Use of a Polyethylene Bag to Reduce Perioperative Regional and Whole-Body Heat Losses in Low-Birth-Weight Neonates Tue, 25 Jul 2017 00:00:00 +0000 In the delivery room, wrapping a low-birth-weight neonate (defined as ≤2.499 g) in a polyethylene bag reduces the risk of hypothermia. However, extended use of the bag (e.g., during neonatal surgery) might conceivably increase the risk of thermal stress and thus body overheating. Here, we assessed the efficacy of a polyethylene bag in infants assigned to wrap (W) or nonwrap (NW, control) groups during placement of a percutaneous vena cava catheter by applying a new mathematical model that calculates heat exchanges for covered and uncovered body segments. At the end of the placement procedure, the W and NW groups did not differ significantly in terms of whole-body heat loss (15.80 versus 14.97 kJ·h−1·kg−1, resp.), whereas the abdominal skin temperature was slightly but significantly higher (by 0.32°C) in the W group. Greater evaporation in the W group (2.49 kJ·h−1·kg−1) was primarily balanced by greater whole-body radiant heat loss (3.44 kJ·h−1·kg−1). Wrapping the neonate in a polyethylene bag provides a small thermal benefit when catheter placement takes a long time. Given that polyethylene is transparent to radiant energy, it might be of value to incorporate polymers that are less transparent at infrared wavelengths. Pierre Tourneux, Estelle Durand, Amandine Pelletier, Laurent Ghyselen, Véronique Bach, and Jean-Pierre Libert Copyright © 2017 Pierre Tourneux et al. All rights reserved. Impact of Carbohydrate-Electrolyte Beverage Ingestion on Heart Rate Response While Climbing Mountain Fuji at ~3000 m Mon, 10 Jul 2017 00:00:00 +0000 We sought to investigate whether carbohydrate-electrolyte beverage ingestion reduced heart rate (HR) in twenty-three healthy young adults while climbing Mount Fuji at a given exercise intensity. Twenty-three healthy adults were randomly divided into two groups: the tap water (11 males [M] and 1 female [F]) and the carbohydrate-electrolyte group (10 M and 1 F). HR and activity energy expenditure (AEE) were recorded every min. The HRs for the first 30 minutes of climbing were not significantly different between the groups [121 ± 2 beats per min (bpm) in the tap water and 116 ± 3 bpm in the carbohydrate-electrolyte]; however, HR significantly increased with climbing in the tap water group (129 ± 2 bpm) but showed no significant increase in the carbohydrate-electrolyte group (121 ± 3 bpm). In addition, body weight changes throughout two days ascending and descending on Mount Fuji were inversely related to changes in resting HR. Further, individual variation of body weight changes was suppressed by carbohydrate-electrolyte drink. Collectively, carbohydrate-electrolyte beverage intake may attenuate an increase in HR at a given AEE while mountaineering at ~3000 m compared with tap water intake. Masahiro Horiuchi, Junko Endo, Koichi Kondo, Tadashi Uno, Mayuko Morikawa, and Hiroshi Nose Copyright © 2017 Masahiro Horiuchi et al. All rights reserved. The Response of Macro- and Micronutrient Nutrient Status and Biochemical Processes in Rats Fed on a Diet with Selenium-Enriched Defatted Rapeseed and/or Vitamin E Supplementation Tue, 30 May 2017 00:00:00 +0000 The response of nutrient status and biochemical processes in (i) Wistar and (ii) spontaneously hypertensive (SHR) rats upon dietary intake of selenium- (Se-) enriched defatted rapeseed (DRS) and/or vitamin E fortification was examined to assess the health benefit of DRS in animal nutrition. Twenty-four individuals of each type of rat were used: The control group was fed with an untreated diet (Diet A). In Diets B and C, soybean meal was replaced with defatted DRS, which comprised 14% of the total diet. The selenized DRS application resulted in ~3-fold increase of Se content in the diet. Diet C was also fortified with the addition of vitamin E, increasing the natural content by 30%. The Se content of the blood and kidneys tended to increase in the DRS groups, where the changes were significant () only in the case of SHR rats. The iodine (I) content and the proportion of iodide in rat livers indicated a lower transformation rate of iodide into organoiodine compounds compared to the control. Slight and ambiguous alterations in the antioxidative response of the rat were observed in the DRS groups, but the addition of vitamin E to the diet helped to moderate these effects. Michaela Rýdlová, Karolína Růnová, Jiřina Száková, Alena Fučíková, Anna Hakenová, Petr Mlejnek, Václav Zídek, Jana Tremlová, Oto Mestek, Antonín Kaňa, Jarmila Zídková, Magdalena Melčová, Klára Truhlářová, and Pavel Tlustoš Copyright © 2017 Michaela Rýdlová et al. All rights reserved. Postoperative Compensatory Ammonium Excretion Subsequent to Systemic Acidosis in Cardiac Patients Mon, 22 May 2017 00:00:00 +0000 Background. Postoperative acid-base imbalances, usually acidosis, frequently occur after cardiac surgery. In most cases, the human body, not suffering from any severe preexisting illnesses regarding lung, liver, and kidney, is capable of transient compensation and final correction. The aim of this study was to correlate the appearance of postoperatively occurring acidosis with renal ammonium excretion. Materials and Methods. Between 07/2014 and 10/2014, a total of 25 consecutive patients scheduled for elective isolated coronary artery bypass grafting with cardiopulmonary bypass were enrolled in this prospective observational study. During the operative procedure and the first two postoperative days, blood gas analyses were carried out and urine samples collected. Urine samples were analyzed for the absolute amount of ammonium. Results. Of all patients, thirteen patients developed acidosis as an initial disturbance in the postoperative period: five of respiratory and eight of metabolic origin. Four patients with respiratory acidosis but none of those with metabolic acidosis subsequently developed a base excess > +2 mEq/L. Conclusion. Ammonium excretion correlated with the increase in base excess. The acidosis origin seems to have a large influence on renal compensation in terms of ammonium excretion and the possibility of an overcorrection. Friederike Roehrborn, Daniel-Sebastian Dohle, Indra N. Waack, Konstantinos Tsagakis, Heinz Jakob, and Johanna K. Teloh Copyright © 2017 Friederike Roehrborn et al. All rights reserved. Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats Tue, 11 Apr 2017 06:34:57 +0000 Increased sugar consumption, especially fructose, is strongly related to the development of type 2 diabetes (T2D) and metabolic syndrome. The aim of this study was to evaluate long term effects of fructose supplementation on Wistar rats. Three-week-old male rats were randomly divided into 2 groups: control (C; ) and fructose fed (FF; ), with a fructose enriched drink (20–25% w/v fructose in water) for 21 weeks. Systolic blood pressure, fasting glycemia, and bodyweight were regularly measured. Glucose tolerance was evaluated three times using an oral glucose tolerance test. Insulin levels were measured concomitantly and insulin resistance markers were evaluated (HOMA 2-IR, Insulin Sensitivity Index for glycemia (ISI-gly)). Lipids profile was evaluated on plasma. This fructose supplementation resulted in the early induction of hypertension without renal failure (stable theoretical creatinine clearance) and in the progressive development of fasting hyperglycemia and insulin resistance (higher HOMA 2-IR, lower ISI-gly) without modification of glucose tolerance. FF rats presented dyslipidemia (higher plasma triglycerides) and early sign of liver malfunction (higher liver weight). Although abdominal fat weight was increased in FF rats, no significant overweight was found. In Wistar rats, 21 weeks of fructose supplementation induced a metabolic syndrome (hypertension, insulin resistance, and dyslipidemia) but not T2D. Julie Dupas, Annie Feray, Christelle Goanvec, Anthony Guernec, Nolwenn Samson, Pauline Bougaran, François Guerrero, and Jacques Mansourati Copyright © 2017 Julie Dupas et al. All rights reserved. Physical and Physiological Demands of Recreational Team Handball for Adult Untrained Men Wed, 29 Mar 2017 00:00:00 +0000 Lack of motivation to exercise was reported as a major cause of sedentary behavior in adulthood. This descriptive study examines the acute physical and physiological demands of recreational team handball and evaluates whether it could be suggested as an exercise mode for fitness and health enhancement in 33–55-year-old untrained men. Time-motion, heart rate (HR), and blood lactate analyses were obtained from 4 recreational matches. Mean distance covered during the 60 min matches was  m. The players changed match activity times, of which high-intensity runs and unorthodox movements amounted to and per match, respectively. The most frequent highly demanding playing actions were jumps and throws. Match average and peak HR were % and %, respectively. Players exercised at intensities between 81 and 90% for 47% ( min) and >90% for 24% ( min) of total match time. Match average and peak blood lactate values were and  mM, respectively. Recreational team handball is an intermittent high-intensity exercise mode with physical and physiological demands in the range of those found to have a positive effect on aerobic, anaerobic, and musculoskeletal fitness in adult individuals. Training studies considering recreational team handball as a health enhancing intervention are warranted. Susana C. A. Póvoas, Carlo Castagna, Carlos Resende, Eduardo Filipe Coelho, Pedro Silva, Rute Santos, André Seabra, Juan Tamames, Mariana Lopes, Morten Bredsgaard Randers, and Peter Krustrup Copyright © 2017 Susana C. A. Póvoas et al. All rights reserved. Corrigendum to “Influence of a 10-Day Mimic of Our Ancient Lifestyle on Anthropometrics and Parameters of Metabolism and Inflammation: The “Study of Origin”” Thu, 23 Mar 2017 00:00:00 +0000 Leo Pruimboom, Begoña Ruiz-Núñez, Charles L. Raison, Frits A. J. Muskiet, and Jens Freese Copyright © 2017 Leo Pruimboom et al. All rights reserved. Detection of Urine Metabolites in a Rat Model of Chronic Fatigue Syndrome before and after Exercise Wed, 22 Mar 2017 00:00:00 +0000 Purpose. The aim of the present study was to elucidate the metabolic mechanisms associated with chronic fatigue syndrome (CFS) via an analysis of urine metabolites prior to and following exercise in a rat model. Methods. A rat model of CFS was established using restraint-stress, forced exercise, and crowded and noisy environments over a period of 4 weeks. Behavioral experiments were conducted in order to evaluate the model. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS) in combination with multivariate statistical analysis before and after exercise. Results. A total of 20 metabolites were detected in CFS rats before and after exercise. Three metabolic pathways (TCA cycle; alanine, aspartate, and glutamate metabolism; steroid hormone biosynthesis) were significantly impacted before and after exercise, while sphingolipid metabolism alone exhibited significant alterations after exercise only. Conclusion. In addition to metabolic disturbances involving some energy substances, alterations in steroid hormone biosynthesis and sphingolipid metabolism were detected in CFS rats. Sphingosine and 21-hydroxypregnenolone may be key biomarkers of CFS, potentially offering evidence in support of immune dysfunction and hypothalamic-pituitary-adrenal (HPA) axis hypoactivity in patients with CFS. Changzhuan Shao, Yiming Ren, Zinan Wang, Chenzhe Kang, Hongke Jiang, and Aiping Chi Copyright © 2017 Changzhuan Shao et al. All rights reserved. Effects of High-Intensity Interval Training on Aerobic Capacity in Cardiac Patients: A Systematic Review with Meta-Analysis Sun, 12 Mar 2017 08:36:36 +0000 Purpose. The aim of this study was to compare the effects of high-intensity interval training (INTERVAL) and moderate-intensity continuous training (CONTINUOUS) on aerobic capacity in cardiac patients. Methods. A meta-analysis identified by searching the PubMed, Cochrane Library, EMBASE, and Web of Science databases from inception through December 2016 compared the effects of INTERVAL and CONTINUOUS among cardiac patients. Results. Twenty-one studies involving 736 participants with cardiac diseases were included. Compared with CONTINUOUS, INTERVAL was associated with greater improvement in peak VO2 (mean difference 1.76 mL/kg/min, 95% confidence interval 1.06 to 2.46 mL/kg/min, ) and VO2 at AT (mean difference 0.90 mL/kg/min, 95% confidence interval 0.0 to 1.72 mL/kg/min, ). No significant difference between the INTERVAL and CONTINUOUS groups was observed in terms of peak heart rate, peak minute ventilation, VE/VCO2 slope and respiratory exchange ratio, body mass, systolic or diastolic blood pressure, triglyceride or low- or high-density lipoprotein cholesterol level, flow-mediated dilation, or left ventricular ejection fraction. Conclusions. This study showed that INTERVAL improves aerobic capacity more effectively than does CONTINUOUS in cardiac patients. Further studies with larger samples are needed to confirm our observations. Bin Xie, Xianfeng Yan, Xiangna Cai, and Jilin Li Copyright © 2017 Bin Xie et al. All rights reserved. Fitness Effects of 10-Month Frequent Low-Volume Ball Game Training or Interval Running for 8–10-Year-Old School Children Sun, 19 Feb 2017 00:00:00 +0000 We investigated the exercise intensity and fitness effects of frequent school-based low-volume high-intensity training for 10 months in 8–10-year-old children. 239 Danish 3rd-grade school children from four schools were cluster-randomised into a control group (CON, ) or two training groups performing either  min/wk small-sided football plus other ball games (SSG, ) or interval running (IR, ). Whole-body DXA scans, flamingo balance, standing long-jump, 20 m sprint, and Yo-Yo IR1 children’s tests (YYIR1C) were performed before and after the intervention. Mean running velocity was higher () in SSG than in IR ( versus  m/s), while more time () was spent in the highest player load zone (>2; versus %) and highest HR zone (>90% ; versus %) in IR compared to SSG. After 10 months, no significant between-group differences were observed for YYIR1C performance and HR after 2 min of YYIR1C (), but median-split analyses showed that was reduced () in both training groups compared to CON for those with the lowest aerobic fitness (SSG versus CON: 3.2% [95% CI: 0.8–5.5]; IR versus CON: 2.6% [95% CI: 1.1–5.2]). After 10 months, IR had improved () 20 m sprint performance (IR versus CON: 154 ms [95% CI: 61–241]). No between-group differences () were observed for whole-body or leg aBMD, lean mass, postural balance, or jump length. In conclusion, frequent low-volume ball games and interval running can be conducted over a full school year with high intensity rate but has limited positive fitness effects in 8–10-year-old children. Malte Nejst Larsen, Claus Malta Nielsen, Christina Ørntoft, Morten Bredsgaard Randers, Eva Wulff Helge, Mads Madsen, Vibeke Manniche, Lone Hansen, Peter Riis Hansen, Jens Bangsbo, and Peter Krustrup Copyright © 2017 Malte Nejst Larsen et al. All rights reserved. Abundance and Significance of Neuroligin-1 and Neurexin II in the Enteric Nervous System of Embryonic Rats Wed, 18 Jan 2017 09:49:10 +0000 Aim. To investigate the abundance of neuroligin-1 and neurexin II in the enteric nervous system (ENS) of rats on different embryonic days and to explore their potential significance. Methods. The full-thickness colon specimens proximal to the ileocecal junction of rats on embryonic days 16, 18, and 20 and of newborns within 24 hours (E16, E18, E20, and Ep0) were studied, respectively. qRT-PCR was applied for detecting the expressions of neuroligin-1 and neurexin II on mRNA, and western blotting was employed for detecting their further expressions on the whole tissue. Finally, the histological appearance of neuroligin-1 and neurexin IIα was elucidated using immunohistochemical staining. Results. qRT-PCR showed that the neuroligin-1 and neurexin II mRNA expressions of groups E16, E18, E20, and Ep0 increased gradually with the growth of embryonic rats (). Western blotting confirmed the increasing tendency. In immunohistochemical staining, proteins neuroligin-1 and neurexin IIα positive cells concentrated mostly in the myenteric nerve plexus of the colon and their expressions depend on the embryonic time. Conclusion. Neuroligin-1 and neurexin II were both expressed in the ENS and have temporal correlation with the development of ENS, during which neuronal intestinal malformations (NIM) may occur due to their disruptions and consequent abnormal ENS development. Dongming Wang, Jingnian Pan, Guoxin Song, Ni Gao, Yi Zheng, Qiangye Zhang, and Aiwu Li Copyright © 2017 Dongming Wang et al. All rights reserved. Exercise Physiology, Cognitive Function, and Physiologic Alterations in Extreme Conditions 2016 Wed, 21 Dec 2016 07:06:44 +0000 Ellen L. Glickman, Edward J. Ryan, and David Bellar Copyright © 2016 Ellen L. Glickman et al. All rights reserved. TNFα Affects Ciliary Beat Response to Increased Viscosity in Human Pediatric Airway Epithelium Tue, 29 Nov 2016 09:27:48 +0000 In airway epithelium, mucociliary clearance (MCC) velocity depends on the ciliary beat frequency (CBF), and it is affected by mucus viscoelastic properties. Local inflammation induces secretion of cytokines (TNFα) that can alter mucus viscosity; however airway ciliated cells have an autoregulatory mechanism to prevent the collapse of CBF in response to increase in mucus viscosity, mechanism that is associated with an increment in intracellular Ca+2 level (). We studied the effect of TNFα on the autoregulatory mechanism that regulates CBF in response to increased viscosity using dextran solutions, in ciliated cells cultured from human pediatric epithelial adenoid tissue. Cultures were treated with TNFα, before and after the viscous load was changed. TNFα treatment produced a significantly larger decrease in CBF in cultures exposed to dextran. Furthermore, an increment in was observed, which was significantly larger after TNFα treatment. In conclusion, although TNFα has deleterious effects on ciliated cells in response to maintaining CBF after increasing viscous loading, it has a positive effect, since increasing may prevent the MCC collapse. These findings suggest that augmented levels of TNFα associated with an inflammatory response of the nasopharyngeal epithelium may have dual effects that contribute to maintaining the effectiveness of MCC in the upper airways. Claudia González, Karla Droguett, Mariana Rios, Noam A. Cohen, and Manuel Villalón Copyright © 2016 Claudia González et al. All rights reserved. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters Tue, 29 Nov 2016 06:27:45 +0000 Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48 h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated before and after fasting. Results. Fasting decreased () weight, heart rate, and systolic blood pressure, whereas no changes were evident regarding any of the measured heart rate variability indices. Fasting decreased () the concentration of oxygenated hemoglobin and improved () mental flexibility and shifting set, whereas no changes were observed in working memory, visuospatial discrimination, and spatial orientation ability. Fasting also increased () anger, whereas other mood states were not affected by it. Conclusions. 48 h fasting resulted in higher parasympathetic activity and decreased resting frontal brain activity, increased anger, and improved prefrontal-cortex-related cognitive functions, such as mental flexibility and set shifting, in amateur weight lifters. In contrast, hippocampus-related cognitive functions were not affected by it. Rima Solianik, Artūras Sujeta, Asta Terentjevienė, and Albertas Skurvydas Copyright © 2016 Rima Solianik et al. All rights reserved. Effects of Electroacupuncture on the Daily Rhythmicity of Intestinal Movement and Circadian Rhythmicity of Colonic Per2 Expression in Rats with Spinal Cord Injury Thu, 24 Nov 2016 14:18:42 +0000 Background. Spinal cord injury (SCI) leads to bowel dysfunction. Electroacupuncture (EA) may improve bowel function. Objective. To assess EA on daily rhythmicity of intestinal movement and circadian rhythmicity of colonic Per2 expression in rats with SCI. Methods. Rats were randomized to the sham, SCI, and SCI+EA groups. EA was performed at bilateral Zusanli point (ST36) during daytime (11:00–11:30) for 14 days following SCI. Intestinal transit and daily rhythmicity of intestinal movement were assessed. Circadian rhythmicity of colonic Per2 expression was assessed by real-time RT-PCR. Results. EA shortened the stool efflux time and increased the dry fecal weight within 24 h in SCI rats. Daily rhythmicity of intestinal movements was unaffected by SCI. The expression of colonic Per2 peaked at 20:00 and the nadir was observed at 8:00 in the SCI and sham groups. In the SCI+EA group, colonic Per2 expression peaked at 12:00 and 20:00, and the nadir was observed at 8:00. Conclusion. SCI did not change the circadian rhythmicity of colonic Per2 expression in rats, and daily intestinal movement rhythmicity was retained. EA changed the daily rhythmicity of intestinal movement and the circadian rhythmicity of colonic Per2 expression in rats with SCI, increasing Per2 expression shortly after EA treatment. Jie Cheng, Xueqiang Wang, Jiabao Guo, Yujie Yang, Wenyi Zhang, Bin Xie, Zhaojin Zhu, Yuemei Lu, and Yi Zhu Copyright © 2016 Jie Cheng et al. All rights reserved. Relationships between Muscle Architecture of Rectus Femoris and Functional Parameters of Knee Motion in Adults with Down Syndrome Tue, 08 Nov 2016 06:06:09 +0000 This study was designed to measure in vivo muscle architecture of the rectus femoris in adults with Down syndrome, testing possible relationships with functional parameters of the knee motion. Ten adults with Down syndrome and ten typically developed participated in the study. Pennation angle and thickness of the rectus femoris and subcutaneous layer of the thigh were measured via ultrasound imaging. Knee kinematics and electromyographic activity of the rectus femoris were recorded during free leg dropping. Muscle thickness was reduced and subcutaneous layer was thicker in persons with Down syndrome with respect to typically developed adults, but there were no differences in the pennation angle. The area of the rectus femoris EMG activity during the leg flexion was greater in Down syndrome with respect to typically developed adults. The leg movement velocity was lower in Down people than in controls, but the knee excursion was similar between the groups. Functional parameters correlated with pennation angle in the persons with Down syndrome and with muscle thickness in typically developed persons. The description of muscle architecture and the relationships between morphological and functional parameters may provide insights on the limits and the opportunities to overcome the inherent biomechanical instability in Down syndrome. Maria Stella Valle, Antonino Casabona, Marco Micale, and Matteo Cioni Copyright © 2016 Maria Stella Valle et al. All rights reserved. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model Sun, 30 Oct 2016 12:22:02 +0000 Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. Yan Chen, Wenjie Guo, Liangzhi Xu, Wenjuan Li, Meng Cheng, Ying Hu, and Wenming Xu Copyright © 2016 Yan Chen et al. All rights reserved. Acute Mountain Sickness Symptoms Depend on Normobaric versus Hypobaric Hypoxia Tue, 25 Oct 2016 13:36:28 +0000 Acute mountain sickness (AMS), characterized by headache, nausea, fatigue, and dizziness when unacclimatized individuals rapidly ascend to high altitude, is exacerbated by exercise and can be disabling. Although AMS is observed in both normobaric (NH) and hypobaric hypoxia (HH), recent evidence suggests that NH and HH produce different physiological responses. We evaluated whether AMS symptoms were different in NH and HH during the initial stages of exposure and if the assessment tool mattered. Seventy-two 8 h exposures to normobaric normoxia (NN), NH, or HH were experienced by 36 subjects. The Environmental Symptoms Questionnaire (ESQ) and Lake Louise Self-report (LLS) were administered, resulting in a total of 360 assessments, with each subject answering the questionnaire 5 times during each of their 2 exposure days. Classification tree analysis indicated that symptoms contributing most to AMS were different in NH (namely, feeling sick and shortness of breath) compared to HH (characterized most by feeling faint, appetite loss, light headedness, and dim vision). However, the differences were not detected using the LLS. These results suggest that during the initial hours of exposure (1) AMS in HH may be a qualitatively different experience than in NH and (2) NH and HH may not be interchangeable environments. Dana M. DiPasquale, Gary E. Strangman, N. Stuart Harris, and Stephen R. Muza Copyright © 2016 Dana M. DiPasquale et al. All rights reserved. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers Wed, 12 Oct 2016 09:32:10 +0000 Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells. Jung-Joon Cha, Yangkyu Park, Joho Yun, Hyeon Woo Kim, Chang-Ju Park, Giseok Kang, Minhyun Jung, Boryeong Pak, Suk-Won Jin, and Jong-Hyun Lee Copyright © 2016 Jung-Joon Cha et al. All rights reserved. Blood Pressure Response to Submaximal Exercise Test in Adults Thu, 15 Sep 2016 09:12:38 +0000 Background. The assessment of blood pressure (BP) response during exercise test is an important diagnostic instrument in cardiovascular system evaluation. The study aim was to determine normal values of BP response to submaximal, multistage exercise test in healthy adults with regard to their age, gender, and workload. Materials and Methods. The study was conducted in randomly selected normotensive subjects , 512 females and 498 males, aged 18–64 years (mean age 42.1 ± 12.7 years) divided into five age groups. All subjects were clinically healthy with no chronic diseases diagnosed. Exercise stress tests were performed using Monark bicycle ergometer until a minimum of 85% of physical capacity was reached. BP was measured at rest and at peak of each exercise test stage. Results. The relations between BP, age, and workload during exercise test were determined by linear regression analysis and can be illustrated by the equations: systolic BP (mmHg) = 0.346 load (W) + 135.76 for males and systolic BP (mmHg) = 0.103 load (W) + 155.72 for females. Conclusions. Systolic BP increases significantly and proportionally to workload increase during exercise test in healthy adults. The relation can be described by linear equation which can be useful in diagnostics of cardiovascular diseases. Katarzyna Wielemborek-Musial, Katarzyna Szmigielska, Joanna Leszczynska, and Anna Jegier Copyright © 2016 Katarzyna Wielemborek-Musial et al. All rights reserved. Myokines in Response to a Tournament Season among Young Tennis Players Mon, 29 Aug 2016 09:57:22 +0000 The study investigated changes in myokines, heat shock proteins, and growth factors in highly ranked, young, male tennis players in response to physical workload during the competitive season and their potential correlations with match scores. Blood collections were carried out at the beginning, the midpoint, and the end of the tournament season. Data analysis revealed a significant increase in interleukin 6 and its inverse correlation with the number of lost games (; 90% CI −0.06 to 0.77). Neither the irisin nor BDNF level changed notably, yet delta changes of irisin across the season significantly correlated with the number of games won. The concentration of HSP27 recorded a small increase (31.2%; 90% CI 10.7 to 55.5, most likely). A negative correlation was noted between IGF-1 and HSP27 concentration at baseline (−0.70 very high; 90% CI −0.89 to −0.31, very likely). At the end of the season IGF-1 correlated positively with the number of games won ( moderate, 90% CI −0.16 to 0.73, likely) but negatively with the number of games lost (, 90% CI −0.14 to −0.74, likely). In conclusion our data indicated that Il-6, irisin, and growth factor IGF-1 may modify overall performance during a long lasting season, expressed in the amount of games won or lost. K. Witek, P. Żurek, P. Zmijewski, J. Jaworska, P. Lipińska, A. Dzedzej-Gmiat, J. Antosiewicz, and E. Ziemann Copyright © 2016 K. Witek et al. All rights reserved. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior Wed, 17 Aug 2016 12:07:15 +0000 Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20–30 years) and 18 older (60–85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG’s maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes. Ariba Siddiqi, Sridhar Poosapadi Arjunan, and Dinesh Kant Kumar Copyright © 2016 Ariba Siddiqi et al. All rights reserved. Effects of 8-Week Hatha Yoga Training on Metabolic and Inflammatory Markers in Healthy, Female Chinese Subjects: A Randomized Clinical Trial Wed, 03 Aug 2016 14:03:24 +0000 We aimed to determine the effects of an 8 wk Hatha yoga training on blood glucose, insulin, lipid profiles, endothelial microparticles (EMPs), and inflammatory status in healthy, lean, and female Chinese subjects. A total of 30 healthy, female Chinese subjects were recruited and randomized into control or yoga practice group. The yoga practice included 8 wks of yoga practice (2 times/wk) for a total of 16 times. Fasting blood samples were collected before and after yoga training. Plasma was isolated for the measurement of lipid profiles, glucose, insulin, EMPs, and inflammatory cytokines. Whole blood was cultured ex vivo and stimulated with lipopolysaccharide (LPS) and Pam3Cys-SK4. Peripheral blood mononuclear cells (PBMCs) were isolated for the measurement of TLR2 and TLR4 protein expression. Yoga practice significantly reduced plasma cholesterol, LDL-cholesterol, insulin levels, and CD31+/CD42b− EMPs. Cultured whole blood from the yoga group has reduced proinflammatory cytokines secretion both at unstimulated condition and when stimulated with Pam3Cys-SK4; this might be associated with reduced TLR2 protein expression in PBMCs after yoga training. Hatha yoga practice in healthy Chinese female subjects could improve hallmarks related to MetS; thus it can be considered as an ancillary intervention in the primary MetS prevention for the healthy population. This trial is registered with ChiCTR-IOR-14005747. Neng Chen, Xianghou Xia, Liqiang Qin, Li Luo, Shufen Han, Guiping Wang, Ru Zhang, and Zhongxiao Wan Copyright © 2016 Neng Chen et al. All rights reserved. Cognitive Performance during a 24-Hour Cold Exposure Survival Simulation Mon, 11 Jul 2016 12:42:01 +0000 Survivor of a ship ground in polar regions may have to wait more than five days before being rescued. Therefore, the purpose of this study was to explore cognitive performance during prolonged cold exposure. Core temperature () and cognitive test battery (CTB) performance data were collected from eight participants during 24 hours of cold exposure (7.5°C ambient air temperature). Participants (recruited from those who have regular occupational exposure to cold) were instructed that they could freely engage in minimal exercise that was perceived to maintaining a tolerable level of thermal comfort. Despite the active engagement, test conditions were sufficient to significantly decrease after exposure and to eliminate the typical 0.5–1.0°C circadian rise and drop in core temperature throughout a 24 h cycle. Results showed minimal changes in CTB performance regardless of exposure time. Based on the results, it is recommended that survivors who are waiting for rescue should be encouraged to engage in mild physical activity, which could have the benefit of maintaining metabolic heat production, improve motivation, and act as a distractor from cold discomfort. This recommendation should be taken into consideration during future research and when considering guidelines for mandatory survival equipment regarding cognitive performance. Michael J. Taber, Geoffrey L. Hartley, Gregory W. McGarr, Dessi Zaharieva, Fabien A. Basset, Zach Hynes, Francois Haman, Bernard M. Pinet, Michel B. DuCharme, and Stephen S. Cheung Copyright © 2016 Michael J. Taber et al. All rights reserved. The Influence of Humidity on Assessing Irritation Threshold of Ammonia Thu, 09 Jun 2016 09:46:38 +0000 A large number of occupational exposure limit values (OELs) are based on avoiding of sensory irritation of the eyes and the upper respiratory tract. In order to investigate the chemosensory effect range of a chemical, odor and sensory irritation thresholds (lateralization thresholds, LTs) can be assessed. Humidity affects olfactory function and thus influences odor thresholds; however, a similar effect has not been shown for sensory irritation thresholds. The purpose of the present study was to explore whether LTs for ammonia vapor vary depending on the water vapor content of the inspired stimulus. Eight healthy nonsmoking volunteers were simultaneously exposed to ammonia vapor through one nostril and clean air through the other and were asked to determine which nostril received the chemical. Within experimental runs, ascending ammonia concentrations (60–350 ppm) that were either dry or humidified were administered at fixed time intervals. Geometric mean LTs obtained at wet (181 ppm) or dry (172 ppm) conditions did not differ significantly (P = 0.19) and were within the range of those reported by previous studies. These results suggest that humidity is not a critical factor in determining sensory irritation thresholds for ammonia, and future studies will examine if these findings are transferable to sensory irritation thresholds for other chemicals. Christian Monsé, Kirsten Sucker, Frank Hoffmeyer, Birger Jettkant, Hans Berresheim, Jürgen Bünger, and Thomas Brüning Copyright © 2016 Christian Monsé et al. All rights reserved. Influence of a 10-Day Mimic of Our Ancient Lifestyle on Anthropometrics and Parameters of Metabolism and Inflammation: The “Study of Origin” Mon, 06 Jun 2016 08:51:09 +0000 Chronic low-grade inflammation and insulin resistance are intimately related entities that are common to most, if not all, chronic diseases of affluence. We hypothesized that a short-term intervention based on “ancient stress factors” may improve anthropometrics and clinical chemical indices. We executed a pilot study of whether a 10-day mimic of a hunter-gatherer lifestyle favorably affects anthropometrics and clinical chemical indices. Fifty-five apparently healthy subjects, in 5 groups, engaged in a 10-day trip through the Pyrenees. They walked 14 km/day on average, carrying an 8-kilo backpack. Raw food was provided and self-prepared and water was obtained from waterholes. They slept outside in sleeping bags and were exposed to temperatures ranging from 12 to 42°C. Anthropometric data and fasting blood samples were collected at baseline and the study end. We found important significant changes in most outcomes favoring better metabolic functioning and improved anthropometrics. Coping with “ancient mild stress factors,” including physical exercise, thirst, hunger, and climate, may influence immune status and improve anthropometrics and metabolic indices in healthy subjects and possibly patients suffering from metabolic and immunological disorders. Leo Pruimboom, Begoña Ruiz-Núñez, Charles L. Raison, and Frits A. J. Muskiet Copyright © 2016 Leo Pruimboom et al. All rights reserved. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China Wed, 25 May 2016 14:15:57 +0000 The aim of the present study is (1) to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OH)D] and adiponectin, nonesterified fatty acids (NEFAs), and glycerol and (2) to determine the alterations in circulating endothelial microparticles (EMPs) in Chinese male subjects with increased body mass index (BMI). A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW), and obese (OB), per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs), total and high-molecular weight (HMW) adiponectin, 25(OH)D, nonesterified fatty acids (NEFAs), and glycerol. Circulating 25(OH)D levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OH)D levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects. Zhongxiao Wan, Lugang Yu, Jinbo Cheng, Zengli Zhang, Baohui Xu, Xing Pang, Hui Zhou, and Ting Lei Copyright © 2016 Zhongxiao Wan et al. All rights reserved. Effects of Short-Term Physical Activity Interventions on Simple and Choice Response Times Wed, 13 Apr 2016 09:09:48 +0000 Objective. Response time (RT) is important for health and human performance and provides insight into cognitive processes. It deteriorates with age, is associated with chronic physical activity (PA), and improves with PA interventions. We investigated associations between the amount and type of PA undertaken and the rate of change in RT for low-active adults across the age range 18–63 yr. Methods. Insufficiently active adults were assigned to either a walking () or higher-intensity () exercise program conducted over 40 days. Active controls were also recruited (). Simple response time (SRT) and choice response time (CRT) were measured before and after the intervention and at 3-, 6-, and 12-month follow-up. Results. SRT and CRT slowed across the age range; however, habitually active participants at baseline had significantly faster CRT (). The interventions increased weekly PA with corresponding increases in physical fitness. These changes were mirrored in faster CRT across the study for both intervention groups (). No changes were found for SRT. Conclusions. Both PA interventions resulted in improvements in CRT among adults starting from a low activity base. These improvements were relatively rapid and occurred in both interventions despite large differences in exercise volume, type, and intensity. There were no effects on SRT in either intervention. Kevin Norton, Lynda Norton, and Nicole Lewis Copyright © 2016 Kevin Norton et al. All rights reserved. Effects of Pregnancy and Lactation on Iron Metabolism in Rats Wed, 16 Dec 2015 13:04:08 +0000 In female, inadequate iron supply is a highly prevalent problem that often leads to iron-deficiency anemia. This study aimed to understand the effects of pregnancy and lactation on iron metabolism. Rats with different days of gestation and lactation were used to determine the variations in iron stores and serum iron level and the changes in expression of iron metabolism-related proteins, including ferritin, ferroportin 1 (FPN1), ceruloplasmin (Cp), divalent metal transporter 1 (DMT1), transferrin receptor 1 (TfR1), and the major iron-regulatory molecule—hepcidin. We found that iron stores decline dramatically at late-pregnancy period, and the low iron store status persists throughout the lactation period. The significantly increased FPN1 level in small intestine facilitates digestive iron absorption, which maintains the serum iron concentration at a near-normal level to meet the increase of iron requirements. Moreover, a significant decrease of hepcidin expression is observed during late-pregnancy and early-lactation stages, suggesting the important regulatory role that hepcidin plays in iron metabolism during pregnancy and lactation. These results are fundamental to the understanding of iron homeostasis during pregnancy and lactation and may provide experimental bases for future studies to identify key molecules expressed during these special periods that regulate the expression of hepcidin, to eventually improve the iron-deficiency status. Guofen Gao, Shang-Yuan Liu, Hui-Jie Wang, Tian-Wei Zhang, Peng Yu, Xiang-Lin Duan, Shu-E Zhao, and Yan-Zhong Chang Copyright © 2015 Guofen Gao et al. All rights reserved. Motor Functional Evaluation from Physiology and Biomechanics to Clinical and Training Application Tue, 01 Dec 2015 12:13:21 +0000 Jullia Maria D’Andréa Greve, Angelica Castilho Alonso, Luiz Mochizuki, Paulo R. Lucareli, Chandramouli Krishnan, and Richard Baker Copyright © 2015 Jullia Maria D’Andréa Greve et al. All rights reserved. Quercetin Alleviates High-Fat Diet-Induced Oxidized Low-Density Lipoprotein Accumulation in the Liver: Implication for Autophagy Regulation Tue, 01 Dec 2015 10:39:51 +0000 A growing body of evidence has indicated that high-fat diet-induced nonalcoholic fatty liver disease is usually accompanied by oxidized low-density lipoprotein (ox-LDL) deposited in the liver. The current study aimed to investigate the effect of quercetin on high-fat diet-induced ox-LDL accumulation in the liver and to explore the potential underlying mechanisms. The results demonstrate that quercetin supplementation for 24 weeks significantly alleviated high-fat diet-induced liver damage and reduced hepatic cholesterol and ox-LDL level. Quercetin notably inhibited both mRNA and protein expression of CD36 (reduced by 53% and 71%, resp.) and MSR1 (reduced by 25% and 45%, resp.), which were upregulated by high-fat diet. The expression of LC3II was upregulated by 2.4 times whereas that of p62 and mTOR was downregulated by 57% and 63% by quercetin treatment. Therefore, the significantly improved autophagy lysosomal degradation capacity for ox-LDL may be implicated in the hepatoprotective effect of quercetin; scavenger receptors mediated ox-LDL uptake might also be involved. Liang Liu, Chao Gao, Ping Yao, and Zhiyong Gong Copyright © 2015 Liang Liu et al. All rights reserved. Strength, Multijoint Coordination, and Sensorimotor Processing Are Independent Contributors to Overall Balance Ability Thu, 19 Nov 2015 11:39:10 +0000 For young adults, balance is essential for participation in physical activities but is often disrupted following lower extremity injury. Clinical outcome measures such as single limb balance (SLB), Y-balance (YBT), and the single limb hop and balance (SLHB) tests are commonly used to quantify balance ability following injury. Given the varying demands across tasks, it is likely that such outcome measures provide useful, although task-specific, information. But the extent to which they are independent and contribute to understanding the multiple contributors to balance is not clear. Therefore, the purpose of this study was to investigate the associations among these measures as they relate to the different contributors to balance. Thirty-seven recreationally active young adults completed measures including Vertical Jump, YBT, SLB, SLHB, and the new Lower Extremity Dexterity test. Principal components analysis revealed that these outcome measures could be thought of as quantifying the strength, multijoint coordination, and sensorimotor processing contributors to balance. Our results challenge the practice of using a single outcome measure to quantify the naturally multidimensional mechanisms for everyday functions such as balance. This multidimensional approach to, and interpretation of, multiple contributors to balance may lead to more effective, specialized training and rehabilitation regimens. Emily L. Lawrence, Guilherme M. Cesar, Martha R. Bromfield, Richard Peterson, Francisco J. Valero-Cuevas, and Susan M. Sigward Copyright © 2015 Emily L. Lawrence et al. All rights reserved. Novel Sensor-Enabled Ex Vivo Bioreactor: A New Approach towards Physiological Parameters and Porcine Artery Viability Sun, 01 Nov 2015 09:45:28 +0000 The aim of the present work is to design and construct an ex vivo bioreactor system to assess the real time viability of vascular tissue. Porcine carotid artery as a model tissue was used in the ex vivo bioreactor setup to monitor its viability under physiological conditions such as oxygen, pressure, temperature, and flow. The real time tissue viability was evaluated by monitoring tissue metabolism through a fluorescent indicator “resorufin.” Our ex vivo bioreactor allows real time monitoring of tissue responses along with physiological conditions. These ex vivo parameters were vital in determining the tissue viability in sensor-enabled bioreactor and our initial investigations suggest that, porcine tissue viability is considerably affected by high shear forces and low oxygen levels. Histological evaluations with hematoxylin and eosin and Masson’s trichrome staining show intact endothelium with fresh porcine tissue whereas tissues after incubation in ex vivo bioreactor studies indicate denuded endothelium supporting the viability results from real time measurements. Hence, this novel viability sensor-enabled ex vivo bioreactor acts as model to mimic in vivo system and record vascular responses to biopharmaceutical molecules and biomedical devices. Raghavendra Mundargi, Divya Venkataraman, Saranya Kumar, Vishal Mogal, Raphael Ortiz, Joachim Loo, Subbu Venkatraman, and Terry Steele Copyright © 2015 Raghavendra Mundargi et al. All rights reserved. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training Mon, 12 Oct 2015 09:39:20 +0000 Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered. Nosratollah Hedayatpour and Deborah Falla Copyright © 2015 Nosratollah Hedayatpour and Deborah Falla. All rights reserved. Wheelchair Propulsion Biomechanics in Junior Basketball Players: A Method for the Evaluation of the Efficacy of a Specific Training Program Mon, 12 Oct 2015 08:55:10 +0000 As participation in wheelchair sports increases, the need of quantitative assessment of biomechanical performance indicators and of sports- and population-specific training protocols has become central. The present study focuses on junior wheelchair basketball and aims at (i) proposing a method to identify biomechanical performance indicators of wheelchair propulsion using an instrumented in-field test and (ii) developing a training program specific for the considered population and assessing its efficacy using the proposed method. Twelve athletes (10 M, 2 F, age = 17.1 ± 2.7 years, years of practice = 4.5 ± 1.8) equipped with wheelchair- and wrist-mounted inertial sensors performed a 20-metre sprint test. Biomechanical parameters related to propulsion timing, progression force, and coordination were estimated from the measured accelerations and used in a regression model where the time to complete the test was set as dependent variable. Force- and coordination-related parameters accounted for 80% of the dependent variable variance. Based on these results, a training program was designed and administered for three months to six of the athletes (the others acting as control group). The biomechanical indicators proved to be effective in providing additional information about the wheelchair propulsion technique with respect to the final test outcome and demonstrated the efficacy of the developed program. Elena Bergamini, Francesca Morelli, Flavia Marchetti, Giuseppe Vannozzi, Lorenzo Polidori, Francesco Paradisi, Marco Traballesi, Aurelio Cappozzo, and Anna Sofia Delussu Copyright © 2015 Elena Bergamini et al. All rights reserved. Attenuation of Upper Body Accelerations during Gait: Piloting an Innovative Assessment Tool for Parkinson’s Disease Sun, 11 Oct 2015 14:01:37 +0000 The objective of the current investigation was to explore whether upper body accelerations obtained during gait provide sensitive measures of postural control in people with Parkinson’s disease (PD). Thirteen people with PD ( years) and nineteen age-matched controls ( years) walked continuously for two minutes while wearing three inertial sensors located on their lower back (L5), shoulder level (C7), and head. Magnitude (root mean square (RMS)), attenuation (attenuation coefficient), and smoothness (Harmonic ratios, HR) of the accelerations were calculated. People with PD demonstrated greater RMS, particularly in the mediolateral direction, but similar harmonic ratio of head accelerations compared to controls. In addition, they did not attenuate accelerations through the trunk and neck as well as control participants. Our findings indicate that measuring upper body movement provides unique information regarding postural control in PD and that poor attenuation of acceleration from the pelvis to the head contributes to impaired head control. This information is simple to measure and appears to be sensitive to PD and, consequently, is proposed to benefit researchers and clinicians. Christopher Buckley, Brook Galna, Lynn Rochester, and Claudia Mazzà Copyright © 2015 Christopher Buckley et al. All rights reserved. Acute Effect on Arterial Stiffness after Performing Resistance Exercise by Using the Valsalva Manoeuvre during Exertion Sun, 11 Oct 2015 12:50:58 +0000 Background. Performing resistance exercise could lead to an increase in arterial stiffness. Objective. We investigate the acute effect on arterial stiffness by performing Valsalva manoeuvre during resistance exercise. Materials and Methods. Eighteen healthy young men were assigned to perform bicep curls by using two breathing techniques (exhalation and Valsalva manoeuvre during muscle contraction) on two separate study days. Carotid pulsed wave velocity (cPWV) was measured as an indicator to reflect the body central arterial stiffness using a high-resolution ultrasound system, and its value was monitored repeatedly at three predefined time intervals: before resistance exercise, immediately after exercise, and 15 minutes after exercise. Results. At the 0th minute after resistance exercise was performed using the Valsalva manoeuvre during exertion, a significant increase in cPWV (4.91 m/s ± 0.52) compared with the baseline value (4.67 m/s ± 0.32, ) was observed, and then it nearly returned to its baseline value at the 15th minute after exercise (4.66 m/s ± 0.44, ). These findings persisted after adjusting for age, body mass index, and systolic blood pressure. Conclusion. Our result suggests short duration of resistance exercise may provoke a transient increase in central arterial stiffness in healthy young men. Wai Yip Vincent Mak and Wai Keung Christopher Lai Copyright © 2015 Wai Yip Vincent Mak and Wai Keung Christopher Lai. All rights reserved. Reliability of Force-Velocity Tests in Cycling and Cranking Exercises in Men and Women Sun, 11 Oct 2015 11:41:20 +0000 The present study examined the reliability of the force-velocity relationship during cycling and arm cranking exercises in active males and females. Twenty male and seventeen female physical education students performed three-session tests with legs and three-session tests with arms on a friction-loaded ergometer on six different sessions in a randomized order. The reliability of maximal power , maximal pedal rate , and maximal force were studied using the coefficient of variation (CV), the intraclass correlation coefficient (ICC) and the test-retest correlation coefficient . Reliability indices were better for men (1.74 ≤ CV ≤ 4.36, 0.82 ≤ ICC ≤ 0.97, and 0.81 ≤ ≤ 0.97) compared with women (2.34 ≤ CV ≤ 7.04, 0.44 ≤ ICC ≤ 0.98, and 0.44 ≤ ≤ 0.98) and in cycling exercise (1.74 ≤ CV ≤ 3.85, 0.88 ≤ ICC ≤ 0.98, and 0.90 ≤ ≤ 0.98) compared with arm exercise (2.37 ≤ CV ≤ 7.04, 0.44 ≤ ICC ≤ 0.95, and 0.44 ≤ ≤ 0.95). Furthermore, the reliability indices were high for and whatever the expression of the results (raw data or data related to body dimensions). and could be used in longitudinal physical fitness investigations. However, further studies are needed to judge reliability. Hamdi Jaafar, Elvis Attiogbé, Majdi Rouis, Henry Vandewalle, and Tarak Driss Copyright © 2015 Hamdi Jaafar et al. All rights reserved. Laterality of Stance during Optic Flow Stimulation in Male and Female Young Adults Sun, 11 Oct 2015 09:03:52 +0000 During self-motion, the spatial and temporal properties of the optic flow input directly influence the body sway. Men and women have anatomical and biomechanical differences that influence the postural control during visual stimulation. Given that recent findings suggest a peculiar role of each leg in the postural control of the two genders, we investigated whether the body sway during optic flow perturbances is lateralized and whether anteroposterior and mediolateral components of specific center of pressure (COP) parameters of the right and left legs differ, reexamining a previous experiment (Raffi et al. (2014)) performed with two, side-by-side, force plates. Experiments were performed on 24 right-handed and right-footed young subjects. We analyzed five measures related to the COP of each foot and global data: anteroposterior and mediolateral range of oscillation, anteroposterior and mediolateral COP velocity, and sway area. Results showed that men consistently had larger COP parameters than women. The values of the COP parameters were correlated between the two feet only in the mediolateral axis of women. These findings suggest that optic flow stimulation causes asymmetry in postural balance and different lateralization of postural controls in men and women. Michela Persiani, Alessandro Piras, Salvatore Squatrito, and Milena Raffi Copyright © 2015 Michela Persiani et al. All rights reserved. Relation between the Sensory and Anthropometric Variables in the Quiet Standing Postural Control: Is the Inverted Pendulum Important for the Static Balance Control? Sun, 11 Oct 2015 08:56:40 +0000 The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing. Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway. Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway. Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway. Angélica C. Alonso, Luis Mochizuki, Natália Mariana Silva Luna, Sérgio Ayama, Alexandra Carolina Canonica, and Júlia M. D. A. Greve Copyright © 2015 Angélica C. Alonso et al. All rights reserved. A Decade of Progress Using Virtual Reality for Poststroke Lower Extremity Rehabilitation: Systematic Review of the Intervention Methods Sun, 11 Oct 2015 08:30:35 +0000 Objective. To develop a systematic review of the literature, to describe the different virtual reality (VR) interventions and interactive videogames applied to the lower extremity (LE) of stroke patients, and to analyse the results according to the most frequently used outcome measures. Material and Methods. An electronic search of randomized trials between January 2004 and January 2014 in different databases (Medline, Cinahl, Web of Science, PEDro, and Cochrane) was carried out. Several terms (virtual reality, feedback, stroke, hemiplegia, brain injury, cerebrovascular accident, lower limb, leg, and gait) were combined, and finally 11 articles were included according to the established inclusion and exclusion criteria. Results. The reviewed trials showed a high heterogeneity in terms of study design and assessment tools, which makes it difficult to compare and analyze the different types of interventions. However, most of them found a significant improvement on gait speed, balance and motor function, due to VR intervention. Conclusions. Although evidence is limited, it suggests that VR intervention (more than 10 sessions) in stroke patients may have a positive impact on balance, and gait recovery. Better results were obtained when a multimodal approach, combining VR and conventional physiotherapy, was used. Flexible software seems to adapt better to patients’ requirements, allowing more specific and individual treatments. Carlos Luque-Moreno, Alejandro Ferragut-Garcías, Cleofás Rodríguez-Blanco, Alberto Marcos Heredia-Rizo, Jesús Oliva-Pascual-Vaca, Pawel Kiper, and Ángel Oliva-Pascual-Vaca Copyright © 2015 Carlos Luque-Moreno et al. All rights reserved. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality Sun, 11 Oct 2015 08:04:46 +0000 Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment. Marco Caimmi, Eleonora Guanziroli, Matteo Malosio, Nicola Pedrocchi, Federico Vicentini, Lorenzo Molinari Tosatti, and Franco Molteni Copyright © 2015 Marco Caimmi et al. All rights reserved. Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming Sun, 11 Oct 2015 07:18:09 +0000 The relative contribution of arm stroke and leg kicking to maximal fully tethered front crawl swimming performance remains to be solved. Twenty-three national level young swimmers (12 male and 11 female) randomly performed 3 bouts of 30 s fully tethered swimming (using the whole body, only the arm stroke, and only the leg kicking). A load-cell system permitted the continuous measurement of the exerted forces, and swimming velocity was calculated from the time taken to complete a 50 m front crawl swim. As expected, with no restrictions swimmers were able to exert higher forces than that using only their arm stroke or leg kicking. Estimated relative contributions of arm stroke and leg kicking were 70.3% versus 29.7% for males and 66.6% versus 33.4% for females, with 15.6% and 13.1% force deficits, respectively. To obtain higher velocities, male swimmers are highly dependent on the maximum forces they can exert with the arm stroke (, ), whereas female swimmers swimming velocity is more related to whole-body mean forces (, ). The obtained results point that leg kicking plays an important role over short duration high intensity bouts and that the used methodology may be useful to identify strength and/or coordination flaws. Pedro G. Morouço, Daniel A. Marinho, Mikel Izquierdo, Henrique Neiva, and Mário C. Marques Copyright © 2015 Pedro G. Morouço et al. All rights reserved. Influence of Acute Normobaric Hypoxia on Hemostasis in Volunteers with and without Acute Mountain Sickness Tue, 15 Sep 2015 07:40:38 +0000 Introduction. The aim of the present study was to investigate whether a 12-hour exposure in a normobaric hypoxic chamber would induce changes in the hemostatic system and a procoagulant state in volunteers suffering from acute mountain sickness (AMS) and healthy controls. Materials and Methods. 37 healthy participants were passively exposed to 12.6% FiO2 (simulated altitude hypoxia of 4,500 m). AMS development was investigated by the Lake Louise Score (LLS). Prothrombin time, activated partial thromboplastin time, fibrinogen, and platelet count were measured and specific methods (i.e., thromboelastometry and a thrombin generation test) were used. Results. AMS prevalence was 62.2% (LLS cut off of 3). For the whole group, paired sample t-tests showed significant increase in the maximal concentration of generated thrombin. ROTEM measurements revealed a significant shortening of coagulation time and an increase of maximal clot firmness (InTEM test). A significant increase in maximum clot firmness could be shown (FibTEM test). Conclusions. All significant changes in coagulation parameters after exposure remained within normal reference ranges. No differences with regard to measured parameters of the hemostatic system between AMS-positive and -negative subjects were observed. Therefore, the hypothesis of the acute activation of coagulation by hypoxia can be rejected. Marc Schaber, Veronika Leichtfried, Dietmar Fries, Maria Wille, Hannes Gatterer, Martin Faulhaber, Philipp Würtinger, and Wolfgang Schobersberger Copyright © 2015 Marc Schaber et al. All rights reserved. Orthostatic Intolerance Is Independent of the Degree of Autonomic Cardiovascular Adaptation after 60 Days of Head-Down Bed Rest Thu, 03 Sep 2015 11:12:19 +0000 Spaceflight and head-down bed rest (HDBR) can induce the orthostatic intolerance (OI); the mechanisms remain to be clarified. The aim of this study was to determine whether or not OI after HDBR relates to the degree of autonomic cardiovascular adaptation. Fourteen volunteers were enrolled for 60 days of HDBR. A head-up tilt test (HUTT) was performed before and after HDBR. Our data revealed that, in all nonfainters, there was a progressive increase in heart rate over the course of HDBR, which remained higher until 12 days of recovery. The mean arterial pressure gradually increased until day 56 of HDBR and returned to baseline after 12 days of recovery. Respiratory sinus arrhythmia and baroreflex sensitivity decreased during HDBR and remained suppressed until 12 days of recovery. Low-frequency power of systolic arterial pressure increased during HDBR and remained elevated during recovery. Three subjects fainted during the HUTT after HDBR, in which systemic vascular resistance did not increase and remained lower until syncope. None of the circulatory patterns significantly differed between the fainters and the nonfainters at any time point. In conclusion, our data indicate that the impaired orthostatic tolerance after HDBR could not be distinguished by estimation of normal hemodynamic and/or neurocardiac data. Jiexin Liu, Yongzhi Li, Bart Verheyden, Zhanghuang Chen, Jingyu Wang, Yinghui Li, André E. Aubert, and Ming Yuan Copyright © 2015 Jiexin Liu et al. All rights reserved. Targeted Mutation of Nuclear Bone Morphogenetic Protein 2 Impairs Secondary Immune Response in a Mouse Model Sun, 23 Aug 2015 07:19:26 +0000 We recently identified a nuclear variant of the BMP2 growth factor, called nBMP2. In an effort to understand the function of this variant protein, we generated a mouse line in which BMP2 is expressed and functions normally, but nBMP2 is excluded from the nucleus. This novel mutation allows the study of nBMP2 without compromising BMP2 function. To determine whether nBMP2 plays a role in immune function, we performed a series of experiments in which we compared mouse survival, organ weights, immune cells numbers, and bacterial load in wild type and mice following primary and secondary challenges with Staphylococcus aureus. Following primary challenge with S. aureus, wild type and mice showed no differences in survival or bacterial load and generated similar numbers and types of leukocytes, although mutant spleens were smaller than wild type. Secondary bacterial challenge with S. aureus, however, produced differences in survival, with increased mortality seen in mice. This increased mortality corresponded to higher levels of bacteremia in mice and to a reduced enlargement of mutant spleens in response to the secondary infection. Together, these results suggest that the recently described nuclear variant of BMP2 is necessary for efficient secondary immune responses. Daniel S. Olsen, Wesley A. Goar, Brandt A. Nichols, K. Tyson Bailey, S. Loyd Christensen, Kayla R. Merriam, Paul R. Reynolds, Eric Wilson, K. Scott Weber, and Laura C. Bridgewater Copyright © 2015 Daniel S. Olsen et al. All rights reserved. Thermovision Analysis Changes of Human Hand Surface Temperature in Cold Pressor Test Wed, 12 Aug 2015 09:55:28 +0000 The cold pressor test (CTP) as a diagnostic method of the circulatory system reactivity may be a basis for the qualification for thermal stimulation therapy. The aim of the work was a thermovisual assessment of the reaction to the Hines and Brown cold pressor test. A group of 30 healthy men in the age of 23.5 ± 0.8 years were examined. The average weight of the examinees was 78.4 ± 9.2 kg, their height 180.7 ± 5.9 cms, and BMI 23.9 ± 2.2 kg/m2. A thermovisual picture of a tested and not tested hand of all the subjects was taken before and after the cold pressor test. Under the influence of cold water the surface temperature of a tested hand has decreased in a statistically significant way by 8.3°C on average, which is 29% of the temperature before the test, whilst the temperature of an untested hand dropped by 0.67°C. The decreases of temperature were not even and there was a statistically significant difference between the dorsal and palmar side of the hand. The correlation between the changes of systolic blood pressure and the hand surface temperature before and after CTP was observed. Agnieszka Chwałczyńska, Katarzyna Gruszka, Ireneusz Całkosiński, and Krzysztof A. Sobiech Copyright © 2015 Agnieszka Chwałczyńska et al. All rights reserved. Bioarcheology: Medicine, Biology, and Forensic Sciences Thu, 06 Aug 2015 09:24:49 +0000 Otto Appenzeller, Timothy G. Bromage, Rabab Khairat, Andreas G. Nerlich, and Frank Jakobus Rühli Copyright © 2015 Otto Appenzeller et al. All rights reserved. Paleopathology and Nutritional Analysis of a South German Monastery Population Thu, 06 Aug 2015 08:56:45 +0000 The monastery of Attel, Upper Bavaria, which was founded in AD 1030, harbours a series of crypt burials from the time period between AD 1700 and 1750. Due to a restoration of the church, 16 crypts had to be removed and were subjected to an extensive anthropological-paleopathological and isotope analysis. The 16 crypts contained 19 burials in open wooden coffins. All bodies were covered by an extensive layer of calcium carbonate. Despite this “treatment,” bone and teeth were excellently preserved (mean degree of conservation > 75%, completeness > 85%). The anthropological investigation revealed a mean age of 38.5 years and a body height of 1.71 m. Paleopathologically, a surprisingly high rate of trauma was seen (13 injuries in 7 different individuals, i.e., 36.8% of individuals affected), 2 cases presented signs of extensive arthritis urica (gout), and several monks were affected by arthrosis of shoulder and knee joints. Extensive dental attrition, numerous foci of dental caries, and dentogenic abscesses coincided with considerable dental calculus indicating poor oral hygienic conditions. Stable isotope analysis showed adequate mixed carnivore-herbivore nutrition, comparable to that of contemporaneous upper class individuals. This extensive combined analysis provides considerable insight into the nutrition and disease pattern of a middle-class monastery of early 18th century South Germany. Andreas G. Nerlich, Alfred Riepertinger, Ralph Gillich, and Stephanie Panzer Copyright © 2015 Andreas G. Nerlich et al. All rights reserved. A Systematic Approach to the Application of Soft Tissue Histopathology in Paleopathology Thu, 06 Aug 2015 08:46:06 +0000 The application of histology to soft tissue remains offers an important technique to obtain diagnostically important information on various physiological and pathological conditions in paleopathology. In a series of 29 cases with mummified tissue ranging between 16 months and c. 5.200 years of postmortem time interval, we systematically investigated paleohistology and the preservation of various tissues. We established a reproducible histological ranking system for the evaluation of mummified tissue preservation. The application of this scheme to the series showed good tissue preservation of tissues with high connective tissue content but also fat tissue and connective tissue rich organs, such as lung tissue, while most other internal organs were less well preserved despite highly different postmortem time intervals. There are some organs with only poor conservation even in short term periods such as the kidneys and CNS. Artificial mummification does not provide better conservation than naturally mummified tissues; “cold” mummies may be much better conserved than those from desert areas. The identification of specific pathologies underlines the potential power of paleohistology. Christina Grove, Oliver Peschel, and Andreas G. Nerlich Copyright © 2015 Christina Grove et al. All rights reserved. New Ancient Egyptian Human Mummies from the Valley of the Kings, Luxor: Anthropological, Radiological, and Egyptological Investigations Thu, 06 Aug 2015 08:44:17 +0000 The Valley of the Kings (arab. Wadi al Muluk; KV) situated on the West Bank near Luxor (Egypt) was the site for royal and elite burials during the New Kingdom (ca. 1500–1100 BC), with many tombs being reused in subsequent periods. In 2009, the scientific project “The University of Basel Kings’ Valley Project” was launched. The main purpose of this transdisciplinary project is the clearance and documentation of nonroyal tombs in the surrounding of the tomb of Pharaoh Thutmosis III (ca. 1479–1424 BC; KV 34). This paper reports on newly discovered ancient Egyptian human mummified remains originating from the field seasons 2010–2012. Besides macroscopic assessments, the remains were conventionally X-rayed by a portable X-ray unit in situ inside KV 31. These image data serve as basis for individual sex and age determination and for the study of probable pathologies and embalming techniques. A total of five human individuals have been examined so far and set into an Egyptological context. This project highlights the importance of ongoing excavation and science efforts even in well-studied areas of Egypt such as the Kings’ Valley. Frank Rühli, Salima Ikram, and Susanne Bickel Copyright © 2015 Frank Rühli et al. All rights reserved. Frozen Mummies from Andean Mountaintop Shrines: Bioarchaeology and Ethnohistory of Inca Human Sacrifice Thu, 06 Aug 2015 08:07:45 +0000 This study will focus on frozen mummies of sacrificial victims from mounts Llullaillaco (6739 m), Quehuar (6130 m), El Toro (6160 m), and the Aconcagua massif. These finds provide bioarchaeological data from mountaintop sites that has been recovered in scientifically controlled excavations in the northwest of Argentina, which was once part of the southern province of the Inca Empire. Numerous interdisciplinary studies have been conducted on the Llullaillaco mummies, including radiological evaluations by conventional X-rays and CT scans, which provided information about condition and pathology of the bones and internal organ, as well as dental studies oriented to the estimation of the ages of the three children at the time of death. Ancient DNA studies and hair analysis were also performed in cooperation with the George Mason University, the University of Bradford, and the Laboratory of Biological Anthropology at the University of Copenhagen. Ethnohistorical sources reveal interesting aspects related to the commemorative, expiatory, propitiatory, and dedicatory aspects of human sacrifice performed under Inca rule. The selection of the victims along with the procedures followed during the performance of the capacocha ceremony will be discussed, based on the bioarchaeological evidences from frozen mummies and the accounts recorded by the Spanish chroniclers. Maria Constanza Ceruti Copyright © 2015 Maria Constanza Ceruti. All rights reserved. Modeling Clinical States and Metabolic Rhythms in Bioarcheology Thu, 06 Aug 2015 07:52:41 +0000 Bioarcheology is cross disciplinary research encompassing the study of human remains. However, life’s activities have, up till now, eluded bioarcheological investigation. We hypothesized that growth lines in hair might archive the biologic rhythms, growth rate, and metabolism during life. Computational modeling predicted the physical appearance, derived from hair growth rate, biologic rhythms, and mental state for human remains from the Roman period. The width of repeat growth intervals (RI’s) on the hair, shown by confocal microscopy, allowed computation of time series of periodicities of the RI’s to model growth rates of the hairs. Our results are based on four hairs from controls yielding 212 data points and the RI’s of six cropped hairs from Zweeloo woman’s scalp yielding 504 data points. Hair growth was, ten times faster than normal consistent with hypertrichosis. Cantú syndrome consists of hypertrichosis, dyschondrosteosis, short stature, and cardiomegaly. Sympathetic activation and enhanced metabolic state suggesting arousal was also present. Two-photon microscopy visualized preserved portions of autonomic nerve fibers surrounding the hair bulb. Scanning electron microscopy found evidence that a knife was used to cut the hair three to five days before death. Thus computational modeling enabled the elucidation of life’s activities 2000 years after death in this individual with Cantu syndrome. This may have implications for archeology and forensic sciences. Clifford Qualls, Raffaella Bianucci, Michael N. Spilde, Genevieve Phillips, Cecilia Wu, and Otto Appenzeller Copyright © 2015 Clifford Qualls et al. All rights reserved. Resilience at the Transition to Agriculture: The Long-Term Landscape and Resource Development at the Aceramic Neolithic Tell Site of Chogha Golan (Iran) Thu, 06 Aug 2015 07:44:07 +0000 The evidence for the slow development from gathering and cultivation of wild species to the use of domesticates in the Near East, deriving from a number of Epipalaeolithic and aceramic Neolithic sites with short occupational stratigraphies, cannot explain the reasons for the protracted development of agriculture in the Fertile Crescent. The botanical and faunal remains from the long stratigraphic sequence of Chogha Golan, indicate local changes in environmental conditions and subsistence practices that characterize a site-specific pathway into emerging agriculture. Our multidisciplinary approach demonstrates a long-term subsistence strategy of several hundred years on wild cereals and pulses as well as on hunting a variety of faunal species that were based on relatively favorable and stable environmental conditions. Fluctuations in the availability of resources after around 10.200 cal BP may have been caused by small-scale climatic fluctuations. The temporary depletion of resources was managed through a shift to other species which required minor technological changes to make these resources accessible and by intensification of barley cultivation which approached its domestication. After roughly 200 years, emmer domestication is apparent, accompanied by higher contribution of cattle in the diet, suggesting long-term intensification of resource management. S. Riehl, E. Asouti, D. Karakaya, B. M. Starkovich, M. Zeidi, and N. J. Conard Copyright © 2015 S. Riehl et al. All rights reserved. The Use and Effectiveness of Triple Multiplex System for Coding Region Single Nucleotide Polymorphism in Mitochondrial DNA Typing of Archaeologically Obtained Human Skeletons from Premodern Joseon Tombs of Korea Thu, 06 Aug 2015 07:39:45 +0000 Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. Chang Seok Oh, Soong Deok Lee, Yi-Suk Kim, and Dong Hoon Shin Copyright © 2015 Chang Seok Oh et al. All rights reserved. Reconstructing Ancient Egyptian Diet through Bone Elemental Analysis Using LIBS (Qubbet el Hawa Cemetery) Thu, 06 Aug 2015 07:23:13 +0000 One of the most important advantages of LIBS that make it suitable for the analysis of archeological materials is that it is a quasi-nondestructive technique. Archeological mandibles excavated from Qubbet el Hawa Cemetery, Aswan, were subjected to elemental analysis in order to reconstruct the dietary patterns of the middle class of the Aswan population throughout three successive eras: the First Intermediate Period (FIP), the Middle Kingdom (MK), and the Second Intermediate Period (SIP). The bone Sr/Ca and Ba/Ca ratios were significantly correlated, so the Sr/Ca ratios are considered to represent the ante-mortem values. It was suggested that the significantly low FIP Sr/Ca compared to that of both the MK and the SIP was attributed to the consumption of unusual sorts of food and imported cereals during years of famine, while the MK Sr/Ca was considered to represent the amelioration of climatic, social, economic, and political conditions in this era of state socialism. The SIP Sr/Ca, which is nearly the same as that of the MK, was considered to be the reflection of the continuity of the individualism respect and state socialism and a reflection of agriculture conditions amelioration under the reign of the 17th Dynasty in Upper Egypt. Ghada Darwish Al-Khafif and Rokia El-Banna Copyright © 2015 Ghada Darwish Al-Khafif and Rokia El-Banna. All rights reserved. Invasive versus Non Invasive Methods Applied to Mummy Research: Will This Controversy Ever Be Solved? Thu, 06 Aug 2015 06:55:57 +0000 Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification). Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry), although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts. Despina Moissidou, Jasmine Day, Dong Hoon Shin, and Raffaella Bianucci Copyright © 2015 Despina Moissidou et al. All rights reserved. Modeling Metabolism and Disease in Bioarcheology Thu, 06 Aug 2015 06:50:14 +0000 We examine two important measures that can be made in bioarcheology on the remains of human and vertebrate animals. These remains consist of bone, teeth, or hair; each shows growth increments and each can be assayed for isotope ratios and other chemicals in equal intervals along the direction of growth. In each case, the central data is a time series of measurements. The first important measures are spectral estimates in spectral analyses and linear system analyses; we emphasize calculation of periodicities and growth rates as well as the comparison of power in bands. A low frequency band relates to the autonomic nervous system (ANS) control of metabolism and thus provides information about the life history of the individual of archeological interest. Turning to nonlinear system analysis, we discuss the calculation of SM Pinus’ approximate entropy (ApEn) for short or moderate length time series. Like the concept that regular heart R-R interval data may indicate lack of health, low values of ApEn may indicate disrupted metabolism in individuals of archeological interest and even that a tipping point in deteriorating metabolism may have been reached just before death. This adds to the list of causes of death that can be determined from minimal data. Clifford Qualls and Otto Appenzeller Copyright © 2015 Clifford Qualls and Otto Appenzeller. All rights reserved. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor Sun, 12 Jul 2015 09:51:40 +0000 Three umami substances (glutamate, 5′-inosinate, and 5′-guanylate) were found by Japanese scientists, but umami has not been recognized in Europe and America for a long time. In the late 1900s, umami was internationally recognized as the fifth basic taste based on psychophysical, electrophysiological, and biochemical studies. Three umami receptors (T1R1 + T1R3, mGluR4, and mGluR1) were identified. There is a synergism between glutamate and the 5′-nucleotides. Among the above receptors, only T1R1 + T1R3 receptor exhibits the synergism. In rats, the response to a mixture of glutamate and 5′-inosinate is about 1.7 times larger than that to glutamate alone. In human, the response to the mixture is about 8 times larger than that to glutamate alone. Since glutamate and 5′-inosinate are contained in various foods, we taste umami induced by the synergism in daily eating. Hence umami taste induced by the synergism is a main umami taste in human. Kenzo Kurihara Copyright © 2015 Kenzo Kurihara. All rights reserved. Corrigendum to “Evaluating the Importance of the Carotid Chemoreceptors in Controlling Breathing during Exercise in Man” Tue, 07 Jul 2015 09:59:03 +0000 M. J. Parkes Copyright © 2015 M. J. Parkes. All rights reserved. Nitric Oxide Protects L-Type Calcium Channel of Cardiomyocyte during Long-Term Isoproterenol Stimulation in Tail-Suspended Rats Tue, 16 Jun 2015 11:34:03 +0000 The aim of this study was to investigate the effects of nitric oxide (NO) and reactive oxygen species (ROS) on L-type calcium channel (LTCC) gating properties of cardiomyocytes during long-term isoproterenol (ISO) stimulation. Expression and activity of nNOS as well as S-nitrosylation of LTCC α1C subunit significantly decreased in the myocardium of SUS rats. Long-term ISO stimulation increased ROS in cardiomyocytes of SUS rats. ISO-enhanced calcium current () in the SUS group was less than that in the CON group. The maximal decreased to about 80% or 60% of initial value at the 50th minute of ISO treatment in CON or SUS group, respectively. Specific inhibitor NAAN of nNOS reduced maximal to 50% of initial value in the CON group; in contrast, NO donor SNAP maintained maximal in SUS group to similar extent of CON group after 50 min of ISO treatment. Long-term ISO stimulation also changed steady-state activation (), inactivation (), and recovery () characteristics of LTCC in SUS group. In conclusion, NO-induced S-nitrosylation of LTCC α1C subunit may competitively prevent oxidation from ROS at the same sites. Furthermore, LTCC can be protected by NO during long-term ISO stimulation. Zhi-Jie Yue, Peng-Tao Xu, Bo Jiao, Hui Chang, Zhen Song, Man-Jiang Xie, and Zhi-Bin Yu Copyright © 2015 Zhi-Jie Yue et al. All rights reserved. Bone Mechanical Properties and Mineral Density in Response to Cessation of Jumping Exercise and Honey Supplementation in Young Female Rats Mon, 15 Jun 2015 14:35:53 +0000 This study investigated effects of cessation of exercise and honey supplementation on bone properties in young female rats. Eighty-four 12-week-old Sprague-Dawley female rats were divided into 7 groups: 16S, 16J, 16H, 16JH, 8J8S, 8H8S, and 8JH8S (8 = 8 weeks, 16 = 16 weeks, S = sedentary without honey supplementation, H = honey supplementation, and J = jumping exercise). Jumping exercise consisted of 40 jumps/day for 5 days/week. Honey was given to the rats at a dosage of 1 g/kg body weight/rat/day via force feeding for 7 days/week. Jumping exercise and honey supplementation were terminated for 8 weeks in 8J8S, 8H8S, and 8JH8S groups. After 8 weeks of cessation of exercise and honey supplementation, tibial energy, proximal total bone density, midshaft cortical moment of inertia, and cortical area were significantly higher in 8JH8S as compared to 16S. Continuous sixteen weeks of combined jumping and honey resulted in significant greater tibial maximum force, energy, proximal total bone density, proximal trabecular bone density, midshaft cortical bone density, cortical area, and midshaft cortical moment of inertia in 16JH as compared to 16S. These findings showed that the beneficial effects of 8 weeks of combined exercise and honey supplementation still can be observed after 8 weeks of the cessation and exercise and supplementation. Somayeh Sadat Tavafzadeh, Foong Kiew Ooi, Chee Keong Chen, Siti Amrah Sulaiman, and Leong Kim Hung Copyright © 2015 Somayeh Sadat Tavafzadeh et al. All rights reserved. Physiological Effects of Mind and Body Practices Wed, 10 Jun 2015 09:48:16 +0000 Shirley Telles, Patricia Gerbarg, and Elisa H. Kozasa Copyright © 2015 Shirley Telles et al. All rights reserved. The Beginnings of Pancreatology as a Field of Experimental and Clinical Medicine Tue, 09 Jun 2015 07:18:28 +0000 This review presents the history of discoveries concerning the pancreas. In antiquity and the Middle Ages knowledge about the anatomy of the pancreas was very limited and its function was completely unknown. Significant progress was first made in the seventeenth and eighteenth centuries. Johann Georg Wirsüng, the prosector of the University of Padua, discovered the main pancreatic duct, and Giovanni Santorini discovered the accessory duct. Regnier de Graaf was the first to perform pancreatic exocrine studies, and Paul Langerhans’s 1869 discovery of pancreatic islets was the first step toward recognizing the pancreas as an endocrine gland. The twentieth century brought the discovery of insulin and other pancreatic hormones. To date, histochemical staining, transmission electron microscopy, and immunohistochemistry enabled the discovery of five cell types with identified hormonal products in adult human pancreatic islets. Twentieth-century pancreatic studies led to crucial advances in scientific knowledge and were recognized, among other things, with seven Nobel Prizes. The first of these went to Ivan Pavlov in 1904 for his work on the physiology of digestion. The most recent was awarded to Günter Blobel in 1999 for discovering signaling mechanisms that govern the transport and localization of proteins within pancreatic acinar cells. Piotr Ceranowicz, Jakub Cieszkowski, Zygmunt Warzecha, Beata Kuśnierz-Cabala, and Artur Dembiński Copyright © 2015 Piotr Ceranowicz et al. All rights reserved. Validity of Four Commercial Bioelectrical Impedance Scales in Measuring Body Fat among Chinese Children and Adolescents Mon, 08 Jun 2015 11:46:16 +0000 The aim of the study is to examine the validity in predicting body fat percentage (%BF) of different bioelectrical impedance (BIA) devices among Chinese children and adolescents. A total of 255 Chinese children and adolescents aged 9–19 years old participated in the study. %BF was assessed by BIA scales, namely, Biodynamics-310 (Model A), Tanita TBF-543 (Model B), Tanita BC-545 (Model C), and InBody 520 (Model D). Dual-energy X-ray absorptiometry (DXA) was used as the criterion measurement. Lin’s concordance correlation coefficients of estimated %BF between Model A, Model B, Model C, and DXA showed poor agreements for both genders. Moderate agreements for %BF were found between DXA and Model D measurements. In boys, differences in %BF were found between DXA and Model B and Model C. No significant %BF differences were found between Model A, Model D, and DXA. However, the two BIA analyzers showed a significant positive correlation between the bias and average %BF between BIA and DXA. In girls, differences in %BF were observed between Model B, Model C, Model D, and DXA. Model A and DXA showed no significant differences of %BF; however, the bias and the average %BF between the BIA and DXA had a significant positive correlation. Using embedded equations in BIA devices should be validated in assessing the %BF of Chinese children and adolescents. Lin Wang and Stanley Sai-chuen Hui Copyright © 2015 Lin Wang and Stanley Sai-chuen Hui. All rights reserved. Mindfulness Meditation Improves Mood, Quality of Life, and Attention in Adults with Attention Deficit Hyperactivity Disorder Sun, 07 Jun 2015 09:33:44 +0000 Objective. Adults with attention deficit hyperactivity disorder (ADHD) display affective problems and impaired attention. Mood in ADHD can be improved by mindful awareness practices (MAP), but results are mixed regarding the enhancement of attentional performance. Here we evaluated MAP-induced changes in quality of life (QoL), mood, and attention in adult ADHD patients and controls using more measures of attention than prior studies. Methods. Twenty-one ADHD patients and 8 healthy controls underwent 8 weekly MAP sessions; 22 similar patients and 9 controls did not undergo the intervention. Mood and QoL were assessed using validated questionnaires, and attention was evaluated using the Attentional Network Test (ANT) and the Conners Continuous Performance Test (CPT II), before and after intervention. Results. MAP enhanced sustained attention (ANT) and detectability (CPT II) and improved mood and QoL of patients and controls. Conclusion. MAP is a complementary intervention that improves affect and attention of adults with ADHD and controls. Viviane Freire Bueno, Elisa H. Kozasa, Maria Aparecida da Silva, Tânia Maria Alves, Mario Rodrigues Louzã, and Sabine Pompéia Copyright © 2015 Viviane Freire Bueno et al. All rights reserved. Qigong as a Traditional Vegetative Biofeedback Therapy: Long-Term Conditioning of Physiological Mind-Body Effects Sun, 07 Jun 2015 07:29:54 +0000 A contemporary understanding of Chinese Medicine (CM) regards CM diagnosis as a functional vegetative state that may be treated by vegetative reflex therapies such as acupuncture. Within this context, traditional mind-body exercises such as Qigong can be understood as an attempt to enhance physiological proprioception, by combining a special state of “awareness” with posture, movement, and breath control. We have formerly trained young auditing flutists in “White Ball” Qigong to minimize anxiety-induced cold hands and lower anxiety-induced heart rate. Functional changes occurred 2–5 min after training and were observed over the whole training program, allowing the children to control their symptoms. In our current work, we report that warm fingers and calm hearts could be induced by the children even without Qigong exercises. Thus, these positive changes once induced and “conditioned” vegetatively were stable after weeks of training. This may show the mechanism by which Qigong acts as a therapeutic measure in disease: positive vegetative pathways may be activated instead of dysfunctional functional patterns. The positive vegetative patterns then may be available in critical stressful situations. Qigong exercise programs may therefore be understood as an ancient vegetative biofeedback exercise inducing positive vegetative functions which are added to the individual reactive repertoire. Luís Carlos Matos, Cláudia Maria Sousa, Mário Gonçalves, Joaquim Gabriel, Jorge Machado, and Henry Johannes Greten Copyright © 2015 Luís Carlos Matos et al. All rights reserved. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings Sun, 07 Jun 2015 07:25:34 +0000 Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. Nilkamal Singh and Shirley Telles Copyright © 2015 Nilkamal Singh and Shirley Telles. All rights reserved. Mindful Emotion Regulation: Exploring the Neurocognitive Mechanisms behind Mindfulness Sun, 07 Jun 2015 07:16:00 +0000 The purpose of this paper is to review some of the psychological and neural mechanisms behind mindfulness practice in order to explore the unique factors that account for its positive impact on emotional regulation and health. After reviewing the mechanisms of mindfulness and its effects on clinical populations we will consider how the practice of mindfulness contributes to the regulation of emotions. We argue that mindfulness has achieved effective outcomes in the treatment of anxiety, depression, and other psychopathologies through the contribution of mindfulness to emotional regulation. We consider the unique factors that mindfulness meditation brings to the process of emotion regulation that may account for its effectiveness. We review experimental evidence that points towards the unique effects of mindfulness specifically operating over and above the regulatory effects of cognitive reappraisal mechanisms. A neuroanatomical circuit that leads to mindful emotion regulation is also suggested. This paper thereby aims to contribute to proposed models of mindfulness for research and theory building by proposing a specific model for the unique psychological and neural processes involved in mindful detachment that account for the effects of mindfulness over and above the effects accounted for by other well-established emotional regulation processes such as cognitive reappraisal. Alessandro Grecucci, Edoardo Pappaianni, Roma Siugzdaite, Anthony Theuninck, and Remo Job Copyright © 2015 Alessandro Grecucci et al. All rights reserved. The Effects of Guided Imagery on Heart Rate Variability in Simulated Spaceflight Emergency Tasks Performers Sun, 07 Jun 2015 07:04:00 +0000 Objectives. The present study aimed to investigate the effects of guided imagery training on heart rate variability in individuals while performing spaceflight emergency tasks. Materials and Methods. Twenty-one student subjects were recruited for the experiment and randomly divided into two groups: imagery group () and control group (). The imagery group received instructor-guided imagery (session 1) and self-guided imagery training (session 2) consecutively, while the control group only received conventional training. Electrocardiograms of the subjects were recorded during their performance of nine spaceflight emergency tasks after imagery training. Results. In both of the sessions, the root mean square of successive differences (RMSSD), the standard deviation of all normal NN (SDNN), the proportion of NN50 divided by the total number of NNs (PNN50), the very low frequency (VLF), the low frequency (LF), the high frequency (HF), and the total power (TP) in the imagery group were significantly higher than those in the control group. Moreover, LF/HF of the subjects after instructor-guided imagery training was lower than that after self-guided imagery training. Conclusions. Guided imagery was an effective regulator for HRV indices and could be a potential stress countermeasure in performing spaceflight tasks. Zhang Yijing, Du Xiaoping, Liu Fang, Jing Xiaolu, and Wu Bin Copyright © 2015 Zhang Yijing et al. All rights reserved. Measuring a Journey without Goal: Meditation, Spirituality, and Physiology Sun, 07 Jun 2015 06:58:13 +0000 The secular practice of meditation is associated with a range of physiological and cognitive effects, including lower blood pressure, lower cortisol, cortical thickening, and activation of areas of the brain associated with attention and emotion regulation. However, in the context of spiritual practice, these benefits are secondary gains, as the primary aim is spiritual transformation. Despite obvious difficulties in trying to measure a journey without goal, spiritual aspects involved in the practice of meditation should also be addressed by experimental study. This review starts by considering meditation in the form of the relaxation response (a counterpart to the stress response), before contrasting mindfulness research that emphasizes the role of attention and alertness in meditation. This contrast demonstrates how reference to traditional spiritual texts (in this case Buddhist) can be used to guide research questions involving meditation. Further considerations are detailed, along with the proposal that research should triangulate spiritual textual sources, first person accounts (i.e., neurophenomenology), and physiological/cognitive measures in order to aid our understanding of meditation, not only in the secular context of health benefits, but also in the context of spiritual practice. Heather Buttle Copyright © 2015 Heather Buttle. All rights reserved. An Exploratory Analysis of the Relationship between Cardiometabolic Risk Factors and Cognitive/Academic Performance among Adolescents Sun, 07 Jun 2015 06:53:21 +0000 This exploratory study examines the relationship between cardiometabolic risk factors (blood pressure, waist circumference, BMI, and total cholesterol) and cognitive/academic performance. In this study, 1297 Taiwanese tenth-grade volunteers are recruited. Scores from the Basic Competency Test, an annual national competitive entrance examination, are used to evaluate academic performance. Cognitive abilities are accessed via the Multiple Aptitude Test Battery. The results indicate that systolic blood pressure is significantly, negatively associated with academic performance, both in male and female subjects. BMI and waist circumference are associated with verbal reasoning performance with an inverse U-shaped pattern, suggesting that both low and high BMI/waist circumference may be associated with lower verbal reasoning performance. Ting-Kuang Yeh, Ying-Chun Cho, Ting-Chi Yeh, Chung-Yi Hu, Li-Ching Lee, and Chun-Yen Chang Copyright © 2015 Ting-Kuang Yeh et al. All rights reserved. Creating Well-Being: Increased Creativity and proNGF Decrease following Quadrato Motor Training Sun, 07 Jun 2015 06:41:29 +0000 Mind-body practices (MBP) are known to induce electrophysiological and morphological changes, whereas reports related to changes of neurotrophins are surprisingly scarce. Consequently, in the current paper, we focused on the Quadrato motor training (QMT), a newly developed whole-body movement-based MBP, which has been reported to enhance creativity. Here we report the effects of 4 weeks of daily QMT on creativity and proNGF level in two interrelated studies. In Study A, we examined the effects of QMT compared with a walking training (WT) in healthy adults, utilizing the alternate uses task. In contrast with the WT, QMT resulted in increased creativity. In addition, the change in creativity negatively correlated with the change in proNGF levels. In Study B, we examined QMT effects on creativity and additional metacognitive functions in children, using a nonintervention group as control. Similar to Study A, following QMT, we found a negative correlation of proNGF with creativity, as well as working memory updating and planning ability. Together, the current results point to the relationship between increased creativity and decreased proNGF following MBP. Thus, the current research emphasizes the importance of widening the scope of examination of “MBP in motion” in relation to metacognition and well-being. Sabrina Venditti, Loredana Verdone, Caterina Pesce, Nicoletta Tocci, Micaela Caserta, and Tal Dotan Ben-Soussan Copyright © 2015 Sabrina Venditti et al. All rights reserved. The Meditative Mind: A Comprehensive Meta-Analysis of MRI Studies Thu, 04 Jun 2015 16:48:31 +0000 Over the past decade mind and body practices, such as yoga and meditation, have raised interest in different scientific fields; in particular, the physiological mechanisms underlying the beneficial effects observed in meditators have been investigated. Neuroimaging studies have studied the effects of meditation on brain structure and function and findings have helped clarify the biological underpinnings of the positive effects of meditation practice and the possible integration of this technique in standard therapy. The large amount of data collected thus far allows drawing some conclusions about the neural effects of meditation practice. In the present study we used activation likelihood estimation (ALE) analysis to make a coordinate-based meta-analysis of neuroimaging data on the effects of meditation on brain structure and function. Results indicate that meditation leads to activation in brain areas involved in processing self-relevant information, self-regulation, focused problem-solving, adaptive behavior, and interoception. Results also show that meditation practice induces functional and structural brain modifications in expert meditators, especially in areas involved in self-referential processes such as self-awareness and self-regulation. These results demonstrate that a biological substrate underlies the positive pervasive effect of meditation practice and suggest that meditation techniques could be adopted in clinical populations and to prevent disease. Maddalena Boccia, Laura Piccardi, and Paola Guariglia Copyright © 2015 Maddalena Boccia et al. All rights reserved. In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress Thu, 04 Jun 2015 16:39:24 +0000 Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology. Elisabeth T. van Dijk, Joyce H. D. M. Westerink, Femke Beute, and Wijnand A. IJsselsteijn Copyright © 2015 Elisabeth T. van Dijk et al. All rights reserved. The Influence of Buddhist Meditation Traditions on the Autonomic System and Attention Thu, 04 Jun 2015 14:25:16 +0000 Cognitive and neuroscience research from the past several years has shed new light on the influences that meditative traditions have on the meditation practice. Here we review new evidence that shows that types of meditation that developed out of certain traditions such as Vajrayana and Hindu Tantric lead to heightened sympathetic activation and phasic alertness, while types of meditation from other traditions such as Theravada and Mahayana elicit heightened parasympathetic activity and tonic alertness. Such findings validate Buddhist scriptural descriptions of heightened arousal during Vajrayana practices and a calm and alert state of mind during Theravada and Mahayana types of meditation and demonstrate the importance of the cultural and philosophical context out of which the meditation practices develop. Ido Amihai and Maria Kozhevnikov Copyright © 2015 Ido Amihai and Maria Kozhevnikov. All rights reserved. Retracted: The Beneficial Effect of Direct Peritoneal Resuscitation on Septic Shock in Rats Tue, 02 Jun 2015 06:22:22 +0000 BioMed Research International Copyright © 2015 BioMed Research International. All rights reserved. Prohibitin: A Novel Molecular Player in KDEL Receptor Signalling Sun, 10 May 2015 08:04:02 +0000 The KDEL receptor (KDELR) is a seven-transmembrane-domain protein involved in retrograde transport of protein chaperones from the Golgi complex to the endoplasmic reticulum. Our recent findings have shown that the Golgi-localised KDELR acts as a functional G-protein-coupled receptor by binding to and activating Gs and Gq. These G proteins induce activation of PKA and Src and regulate retrograde and anterograde Golgi trafficking. Here we used an integrated coimmunoprecipitation and mass spectrometry approach to identify prohibitin-1 (PHB) as a KDELR interactor. PHB is a multifunctional protein that is involved in signal transduction, cell-cycle control, and stabilisation of mitochondrial proteins. We provide evidence that depletion of PHB induces intense membrane-trafficking activity at the ER–Golgi interface, as revealed by formation of GM130-positive Golgi tubules, and recruitment of p115, β-COP, and GBF1 to the Golgi complex. There is also massive recruitment of SEC31 to endoplasmic-reticulum exit sites. Furthermore, absence of PHB decreases the levels of the Golgi-localised KDELR, thus preventing KDELR-dependent activation of Golgi-Src and inhibiting Golgi-to-plasma-membrane transport of VSVG. We propose a model whereby in analogy to previous findings (e.g., the RAS-RAF signalling pathway), PHB can act as a signalling scaffold protein to assist in KDELR-dependent Src activation. Monica Giannotta, Giorgia Fragassi, Antonio Tamburro, Capone Vanessa, Alberto Luini, and Michele Sallese Copyright © 2015 Monica Giannotta et al. All rights reserved. A Comprehensive Systems Biological Study of Autophagy-Apoptosis Crosstalk during Endoplasmic Reticulum Stress Thu, 23 Apr 2015 06:23:34 +0000 One of the most important tasks of a living organism is to maintain its genetic integrity with respect to stress. Endoplasmic reticulum (ER) has a crucial role in sensing cellular homeostasis by controlling metabolism, proteostasis, and several signaling processes. ER stressors can induce autophagy-dependent survival; however excessive level of stress results in apoptotic cell death. Although many molecular components of these networks have already been discovered, the analysis of the dynamical features of the regulatory network of life-or-death decision is still lacking. Our goal was to incorporate both theoretical and molecular biological techniques to explore the autophagy-apoptosis crosstalk under ER stress. Using various levels of different ER stressors we confirmed that the control network always generated an evidently detectable autophagy-dependent threshold for apoptosis activation. We explored the features of this threshold by introducing both autophagy activators and inhibitors, and transient treatment with excessive level of ER stressor was also performed. Our experimental data were also supported by a stochastic approach. Our analysis suggests that even if the switch-like characteristic of apoptosis activation is hardly seen on population level the double negative feedback loop between autophagy and apoptosis inducers introduces bistability in the control network. Marianna Holczer, Margita Márton, Anita Kurucz, Gábor Bánhegyi, and Orsolya Kapuy Copyright © 2015 Marianna Holczer et al. All rights reserved. Alpha-Mangostin Attenuation of Hyperglycemia-Induced Ocular Hypoperfusion and Blood Retinal Barrier Leakage in the Early Stage of Type 2 Diabetes Rats Thu, 09 Apr 2015 16:09:04 +0000 The present study examined effects of alpha-mangostin (α-MG) supplementation on the retinal microvasculature, including ocular blood flow (OBF) and blood-retinal barrier (BRB) permeability in a type 2 diabetic animal model. Male Sprague-Dawley rats were divided into four groups: normal control and diabetes with or without α-MG supplementation. Alpha-mangostin (200 mg/Kg/day) was administered by gavage feeding for 8 weeks. The effects of α-MG on biochemical and physiological parameters including mean arterial pressure (MAP), OBF, and BRB leakage were investigated. Additionally, levels of retinal malondialdehyde (MDA), advance glycation end products (AGEs), receptor of advance glycation end products (RAGE), tumour necrosis factor alpha (TNF-α), and vascular endothelial growth factor (VEGF) were evaluated. The elevated blood glucose, HbA1c, cholesterol, triglyceride, serum insulin, and HOMA-IR were observed in DM2 rats. Moreover, DM2 rats had significantly decreased OBF but statistically increased MAP and leakage of the BRB. The α-MG-treated DM2 rats showed significantly lower levels of retinal MDA, AGEs, RAGE, TNF-α, and VEGF than the untreated group. Interestingly, α-MG supplementation significantly increased OBF while it decreased MAP and leakage of BRB. In conclusion, α-MG supplementation could restore OBF and improve the BRB integrity, indicating its properties closely associated with antihyperglycemic, antioxidant, anti-inflammatory, and antiglycation activities. Amporn Jariyapongskul, Chonticha Areebambud, Sunit Suksamrarn, and Chantana Mekseepralard Copyright © 2015 Amporn Jariyapongskul et al. All rights reserved. Exercise Physiology, Cognitive Function, and Physiologic Alterations in Extreme Conditions Wed, 25 Mar 2015 12:33:36 +0000 Ellen Glickman, Edward J. Ryan, and David Bellar Copyright © 2015 Ellen Glickman et al. All rights reserved. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity Sun, 22 Mar 2015 11:07:19 +0000 Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) ms−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. Heather E. Wright Beatty, Jocelyn M. Keillor, Stephen G. Hardcastle, Pierre Boulay, and Glen P. Kenny Copyright © 2015 Heather E. Wright Beatty et al. All rights reserved. Human Monocyte Heat Shock Protein 72 Responses to Acute Hypoxic Exercise after 3 Days of Exercise Heat Acclimation Sun, 22 Mar 2015 08:58:04 +0000 The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 . STHA induced an increase in basal HSP72 with no change observed in CON . Basal mHSP72 remained elevated before HST2 for the STHA group and was unchanged from HST1 in CON . Percent change in mHSP72 was lower after HST2 in STHA compared to CON . The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72. Ben J. Lee, Richard W. A. Mackenzie, Valerie Cox, Rob S. James, and Charles D. Thake Copyright © 2015 Ben J. Lee et al. All rights reserved. Cardiopulmonary Response to Exercise in COPD and Overweight Patients: Relationship between Unloaded Cycling and Maximal Oxygen Uptake Profiles Thu, 19 Mar 2015 13:42:13 +0000 Cardiopulmonary response to unloaded cycling may be related to higher workloads. This was assessed in male subjects: 18 healthy sedentary subjects (controls), 14 hypoxemic patients with chronic obstructive pulmonary disease (COPD), and 31 overweight individuals (twelve were hypoxemic). They underwent an incremental exercise up to the maximal oxygen uptake (VO2max), preceded by a 2 min unloaded cycling period. Oxygen uptake (VO2), heart rate (HR), minute ventilation (VE), and respiratory frequency (fR) were averaged every 10 s. At the end of unloaded cycling period, HR increase was significantly accentuated in COPD and hypoxemic overweight subjects (resp., and  min−1, compared to  min−1 in normoxemic overweight subjects and  min−1 in controls). The fR increase was accentuated in all overweight subjects (hypoxemic: ; normoxemic:  min−1) compared to controls ( min−1) and COPDs ( min−1). The plateau VE increase during unloaded cycling was positively correlated with VE values measured at the ventilatory threshold and VO2max. Measurement of ventilation during unloaded cycling may serve to predict the ventilatory performance of COPD patients and overweight subjects during an exercise rehabilitation program. Abdoulaye Ba, Fabienne Brégeon, Stéphane Delliaux, Fallou Cissé, Abdoulaye Samb, and Yves Jammes Copyright © 2015 Abdoulaye Ba et al. All rights reserved. The Effects of Metabolic Work Rate and Ambient Environment on Physiological Tolerance Times While Wearing Explosive and Chemical Personal Protective Equipment Thu, 19 Mar 2015 13:18:40 +0000 This study evaluated the physiological tolerance times when wearing explosive and chemical (>35 kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4, and 5.5 km·h−1 in the following environmental conditions, 21, 30, and 37°C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39°C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate, and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37 < WBGT30 < WBGT21; P < 0.05) and work intensities (5.5 < 4 < 2.5 km·h−1; P < 0.001). The majority of trials (85/108; 78.7%) were terminated due to participant’s heart rate exceeding 90% of their maximum. A total of eight trials (7.4%) lasted the full duration. Only nine (8.3%) trials were terminated due to volitional fatigue and six (5.6%) due to core temperatures in excess of 39°C. These results demonstrate that physiological tolerance times are influenced by the external environment and workload and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multilayered PPE. Joseph T. Costello, Kelly L. Stewart, and Ian B. Stewart Copyright © 2015 Joseph T. Costello et al. All rights reserved. The Effects of Cold and Lower Body Negative Pressure on Cardiovascular Homeostasis Thu, 19 Mar 2015 12:45:39 +0000 Purpose. The purpose of this study is to determine how cold exposure and lower body negative pressure effected cardiovascular variables. Methods. Eleven males (20.3 years ± 2.7) underwent two 20-minute exposures to LBNP. During the 2 trials, the subjects were exposed to cold air (10°C) (COLD) and to ambient temperature (23°C) (AMB). The trials consisted of a 100-minute pre-LBNP period followed by a 20-minute exposure to LBNP and then a 15-minute recovery period. Cardiovascular variables were recorded every 30 minutes using bioimpedance. Results. When LBNP was applied during the AMB trials, stroke volume immediately decreased. During the COLD trial, there was a five-minute delay before the decrease in stroke volume. Heart rate increased immediately after LBNP initiation during the AMB trials but there was a delay in the increase during the COLD trials. That same pattern was followed with mean arterial blood pressures. Cerebral oxygenation was significantly lower throughout the COLD trial as compared to the AMB trials. Six subjects reported symptoms of syncope or presyncope during the AMB trials but there were no reports of symptoms during the COLD trials. Conclusion. From analysis of this data, cold improved the subject’s tolerance to LBNP. David J. Kean, Corey A. Peacock, Gabriel J. Sanders, John McDaniel, Lisa A. C. Colvin, and Ellen L. Glickman Copyright © 2015 David J. Kean et al. All rights reserved. Exhaustive Exercise Attenuates the Neurovascular Coupling by Blunting the Pressor Response to Visual Stimulation Thu, 19 Mar 2015 12:03:41 +0000 Neurovascular coupling (NVC) is assessed as an increase response to visual stimulation, and is monitored by blood flow of the posterior cerebral artery (PCA). To investigate whether exhaustive exercise modifies NVC, and more specifically, the relative contributions of vasodilatation in the downstream of PCA and the pressor response on NVC, we measured blood flow velocity in the PCA (PCAv) in 13 males using transcranial Doppler ultrasound flowmetry during a leg-cycle exercise at 75% of maximal heart rate until exhaustion. NVC was estimated as the relative change in PCAv from the mean value obtained during 20-s with the eyes closed to the peak value obtained during 40-s of visual stimulation involving looking at a reversed checkerboard. Conductance index (CI) was calculated by dividing PCAv by mean arterial pressure (MAP) to evaluate the vasodilatation. At exhaustion, PCAv was significantly decreased relative to baseline measurements, and the PCAv response to visual stimulation significantly decreased. Compared to baseline, exhaustive exercise significantly suppressed the increase in MAP to visual stimulation, while the CI response did not significantly change by the exercise. These results suggest that exhaustive exercise attenuates the magnitude of NVC by blunting the pressor response to visual stimulation. Yuji Yamaguchi, Tsukasa Ikemura, and Naoyuki Hayashi Copyright © 2015 Yuji Yamaguchi et al. All rights reserved. Postexercise Impact of Ice-Cold Water Bath on the Oxidant-Antioxidant Balance in Healthy Men Thu, 19 Mar 2015 11:43:05 +0000 The aim of the study was to determine the effect of a 5 min head-out ice-cold water bath on the oxidant-antioxidant balance in response to exercise. The crossover study included the subjects (; aged years) who performed two identical stationary cycling bouts for 30 min and recovered for 10 min at room temperature (°C; session 1) or in a pool with ice-cold water (°C, 5 min immersion; session 2). The concentration of thiobarbituric acid reactive substances (TBARS) in blood plasma (TBARSpl) and erythrocytes (TBARSer) and the erythrocytic activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were measured three times during each of the two study sessions: before the exercise (baseline) and 20 and 40 min after the appropriate recovery session. Lower concentration of TBARSpl 40 min after postexercise recovery in ICW was revealed as compared with that after recovery at RT (). Moreover, a statistically significant postexercise increase in the TBARSpl and TBARSer concentrations was found ( and , resp.). A short-term ice-cold water bath decreases postexercise lipid peroxidation. Paweł Sutkowy, Alina Woźniak, Tomasz Boraczyński, Celestyna Mila-Kierzenkowska, and Michał Boraczyński Copyright © 2015 Paweł Sutkowy et al. All rights reserved. Single Whole-Body Cryostimulation Procedure versus Single Dry Sauna Bath: Comparison of Oxidative Impact on Healthy Male Volunteers Thu, 19 Mar 2015 09:43:36 +0000 Exposure to extreme heat and cold is one of the environmental factors whose action is precisely based on the mechanisms involving free radicals. Fluctuations in ambient temperature are among the agents that toughen the human organism. The goal of the study was to evaluate the impact of extremely high (dry sauna, DS) and low (whole-body cryostimulation, WBC) environmental temperatures on the oxidant-antioxidant equilibrium in the blood of healthy male subjects. The subjects performed a single DS bath (; 26.2 ± 4.6 years) and a single WBC procedure (; 27.5 ± 3.1 years). In the subjects’ blood taken immediately before and 20 min after the interventions, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and the concentration of thiobarbituric acid reactive substances in erythrocytes (TBARSer) and blood plasma (TBARSpl) were determined. Single WBC and DS procedures induced an increase in the activity of SOD and GPx, as well as SOD and CAT, respectively. The SOD activity was higher after WBC than after DS. Extremely high and low temperatures probably induce the formation of reactive oxygen species in the organisms of healthy men and, therefore, disturb the oxidant-antioxidant balance. Paweł Sutkowy, Alina Woźniak, and Paweł Rajewski Copyright © 2015 Paweł Sutkowy et al. All rights reserved. Physiological and Selective Attention Demands during an International Rally Motor Sport Event Thu, 19 Mar 2015 09:19:48 +0000 Purpose. To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC) event. Methods. Observational data were collected from ten male drivers/codrivers on heart rate (HR), core body () and skin temperature (), hydration status (urine osmolality), fluid intake (self-report), and visual and auditory selective attention (performance tests). Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. Results. In ambient temperatures of 20.1°C (in-car peak 33.9°C) mean (SD) peak HR and were significantly elevated () during rally compared to reconnaissance (166 (17) versus 111 (16) beats·min−1 and 38.5 (0.4) versus 37.6 (0.2)°C, resp.). Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Conclusions. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety. Anthony P. Turner and Hugh Richards Copyright © 2015 Anthony P. Turner and Hugh Richards. All rights reserved. Neuronal Nitric Oxide Synthase Is Dislocated in Type I Fibers of Myalgic Muscle but Can Recover with Physical Exercise Training Tue, 17 Mar 2015 06:44:13 +0000 Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) may contribute to an ineffective muscle function. This study investigated nNOS expression and localization in chronically painful muscle. Forty-one women clinically diagnosed with trapezius myalgia (MYA) and 18 healthy controls (CON) were included in the case-control study. Subsequently, MYA were randomly assigned to either 10 weeks of specific strength training (SST, ), general fitness training (GFT, ), or health information (REF, ). Distribution of fiber type, cross-sectional area, and sarcolemmal nNOS expression did not differ between MYA and CON. However, MYA showed increased sarcoplasmic nNOS localization (18.8 ± 12 versus 12.8 ± 8%, ) compared with CON. SST resulted in a decrease of sarcoplasm-localized nNOS following training (before 18.1 ± 12 versus after 12.0 ± 12%; ,027). We demonstrate that myalgic muscle displays altered nNOS localization and that 10 weeks of strength training normalize these disruptions, which supports previous findings of impaired muscle oxygenation during work tasks and reduced pain following exercise. L. Jensen, L. L. Andersen, H. D. Schrøder, U. Frandsen, and G. Sjøgaard Copyright © 2015 L. Jensen et al. All rights reserved. Intensive Care Medicine Science: An Art Based on Applied Physiology? Tue, 10 Mar 2015 08:20:33 +0000 Karim Bendjelid, Bruno Levy, and Alain Broccard Copyright © 2015 Karim Bendjelid et al. All rights reserved. Patient-Specific Simulation of Coronary Artery Pressure Measurements: An In Vivo Three-Dimensional Validation Study in Humans Sun, 01 Mar 2015 14:08:16 +0000 Pressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire, while testing the effect of different boundary conditions for the simulation. Eight coronary arteries (lumen and outer vessel wall) from six patients were reconstructed in three-dimensional (3D) space using intravascular ultrasound and biplane angiographic images. Pressure values at the distal and proximal end of the vessel and flow velocity values at the distal end were acquired with the use of a combo pressure-flow wire. The 3D lumen and wall models were discretized into finite elements; fluid structure interaction (FSI) and rigid wall simulations were performed for one cardiac cycle both with pulsatile and steady flow in separate simulations. The results showed a high correlation between the measured and the computed coronary pressure values (coefficient of determination [r2] ranging between 0.8902 and 0.9961), while the less demanding simulations using steady flow and rigid walls resulted in very small relative error. Our study demonstrates that computational assessment of coronary pressure is feasible and seems to be accurate compared to the wire-based measurements. Panagiotis K. Siogkas, Michail I. Papafaklis, Antonis I. Sakellarios, Kostas A. Stefanou, Christos V. Bourantas, Lambros S. Athanasiou, Themis P. Exarchos, Katerina K. Naka, Lampros K. Michalis, Oberdan Parodi, and Dimitrios I. Fotiadis Copyright © 2015 Panagiotis K. Siogkas et al. All rights reserved. Effects of Modified Multistage Field Test on Performance and Physiological Responses in Wheelchair Basketball Players Tue, 24 Feb 2015 12:51:26 +0000 A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in “8 form” (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake , minute ventilation , heart rate , peak and relative blood lactate (Δ[Lact−] = peak – rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher and values compared to MFT (: 2.5 ± 0.6 versus 2.3 ± 0.6 L·min−1 and : 96.3 ± 29.1 versus 86.6 ± 23.4 L·min−1; ) with no difference in other parameters. Significant relations between and end-test score were correlated for both field tests . At exhaustion, MFT attained incompletely and . Among experienced wheelchair players, MFT-8 had no effect on test performance but generates higher physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. Thierry Weissland, Arnaud Faupin, Benoit Borel, Serge Berthoin, and Pierre-Marie Leprêtre Copyright © 2015 Thierry Weissland et al. All rights reserved. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions Mon, 23 Feb 2015 14:04:27 +0000 13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant () reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession. Md. Amirul Alam, Abdul Shukor Juraimi, M. Y. Rafii, and Azizah Abdul Hamid Copyright © 2015 Md. Amirul Alam et al. All rights reserved. Muscle IGF-1-Induced Skeletal Muscle Hypertrophy Evokes Higher Insulin Sensitivity and Carbohydrate Use as Preferential Energy Substrate Wed, 04 Feb 2015 14:47:08 +0000 We characterized the metabolic profile of transgenic mice exhibiting enhanced muscle mass driven by increased mIGF-1 expression (MLC/mIGF-1). As expected, 6-month-old MLC/mIGF-1 mice were heavier than age-matched wild type (WT) mice (37.4 ± 0.3 versus 31.8 ± 0.6 g, resp.). MLC/mIGF-1 mice had higher respiratory quotient when compared to WT (0.9 ± 0.03 versus 0.74 ± 0.02, resp.) suggesting a preference for carbohydrate as the major fuel source. MLC/mIGF-1 mice had a higher rate of glucose disposal when compared to WT (3.25 ± 0.14 versus 2.39 ± 0.03%/min, resp.). The higher disposal rate correlated to ∼2-fold higher GLUT4 content in the extensor digitorum longus (EDL) muscle. Analysis of mRNA content for the glycolysis-related gene PFK-1 showed ∼3-fold upregulation in MLC/mIGF-1 animals. We also found a 50% downregulation of PGC1α mRNA levels in MLC/mIGF-1 mouse EDL muscle, suggesting less abundant mitochondria in this tissue. We found no difference in the expression of PPARα and PPARβ/δ, suggesting no modulation of key elements in oxidative metabolism. These data together suggest a shift in metabolism towards higher carbohydrate utilization, and that could explain the increased insulin sensitivity of hypertrophied skeletal muscle in MLC/mIGF-1 mice. Marcelo Augusto Christoffolete, William Jose Silva, Gracielle Vieira Ramos, Mirella Ribeiro Bento, Monique Oliveira Costa, Miriam Oliveira Ribeiro, Maristela Mitiko Okamoto, Tania Helena Lohmann, Ubiratan Fabres Machado, Antonio Musarò, and Anselmo Sigari Moriscot Copyright © 2015 Marcelo Augusto Christoffolete et al. All rights reserved. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle Tue, 03 Feb 2015 06:46:05 +0000 Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats. Peng-Tao Xu, Zhen Song, Wen-Cheng Zhang, Bo Jiao, and Zhi-Bin Yu Copyright © 2015 Peng-Tao Xu et al. All rights reserved. Athletic Differences in the Characteristics of the Photoplethysmographic Pulse Shape: Effect of Maximal Oxygen Uptake and Maximal Muscular Voluntary Contraction Mon, 02 Feb 2015 06:02:29 +0000 This study aimed to investigate the athletic differences in the characteristics of the photoplethysmographic (PPG) pulse shape. 304 athletes were enrolled and divided into three subgroups according to a typical sport classification in terms of the maximal oxygen uptake (MaxO2_low, MaxO2_middle and MaxO2_high groups) or the maximal muscular voluntary contraction (MMVC_low, MMVC_middle, and MMVC_high groups). Finger PPG pulses were digitally recorded and then normalized to derive the pulse area, pulse peak time , dicrotic notch time , and pulse reflection index (RI). The four parameters were finally compared between the three subgroups categorized by MaxO2 or by MMVC. In conclusion, it has been demonstrated by quantifying the characteristics of the PPG pulses in different athletes that MaxO2, but not MMVC, had significant effect on the arterial properties. Anran Wang, Lin Yang, Chengyu Liu, Jingxuan Cui, Yao Li, Xingxing Yang, Song Zhang, and Dingchang Zheng Copyright © 2015 Anran Wang et al. All rights reserved. Exercise-Induced Neuroprotection in the Spastic Han Wistar Rat: The Possible Role of Brain-Derived Neurotrophic Factor Sun, 01 Feb 2015 12:02:13 +0000 Moderate aerobic exercise has been shown to enhance motor skills and protect the nervous system from neurodegenerative diseases, like ataxia. Our lab uses the spastic Han Wistar rat as a model of ataxia. Mutant rats develop forelimb tremor and hind limb rigidity and have a decreased lifespan. Our lab has shown that exercise reduced Purkinje cell degeneration and delayed motor dysfunction, significantly increasing lifespan. Our study investigated how moderate exercise may mediate neuroprotection by analyzing brain-derived neurotrophic factor (BDNF) and its receptor TrkB. To link BDNF to exercise-induced neuroprotection, mutant and normal rats were infused with the TrkB antagonist K252a or vehicle into the third ventricle. During infusion, rats were subjected to moderate exercise regimens on a treadmill. Exercised mutants receiving K252a exhibited a 21.4% loss in Purkinje cells compared to their controls. Cerebellar TrkB expression was evaluated using non-drug-treated mutants subjected to various treadmill running regimens. Running animals expressed three times more TrkB than sedentary animals. BDNF was quantified via Sandwich ELISA, and cerebellar expression was found to be 26.6% greater in mutant rats on 7-day treadmill exercise regimen compared to 30 days of treadmill exercise. These results suggest that BDNF is involved in mediating exercise-induced neuroprotection. Brooke H. Van Kummer and Randy W. Cohen Copyright © 2015 Brooke H. Van Kummer and Randy W. Cohen. All rights reserved. Musculotendinous Stiffness of Triceps Surae, Maximal Rate of Force Development, and Vertical Jump Performance Thu, 29 Jan 2015 09:06:29 +0000 The relationships between ankle plantar flexor musculotendinous stiffness (MTS) and performance in a countermovement vertical jump (CMJ) and maximal rate of torque development (MRTD) were studied in 27 active men. MTS was studied by means of quick releases at 20 (S0.2), 40 (S0.4), 60 (S0.6), and 80% (S0.8) of maximal voluntary torque (TMVC). CMJ was not correlated with strength indices but was positively correlated with MRTD/BM, S0.4/BM. The slope α2 and intercept β2 of the torque-stiffness relationships from 40 to 80% TMVC were correlated negatively (α2) and positively (β2) with CMJ. The different stiffness indices were not correlated with MRTD. The prediction of CMJ was improved by the introduction of MRTD in multiple regressions between CMJ and stiffness. CMJ was also negatively correlated with indices of curvature of the torque-stiffness relationship. The subjects were subdivided in 3 groups in function of CMJ (groups H, M, and L for high, medium, and low performers, resp.). There was a downward curvature of the torque-stiffness relationship at high torques in group H or M and the torque-stiffness regression was linear in group L only. These results suggested that torque-stiffness relationships with a plateau at high torques are more frequent in the best jumpers. Tarak Driss, Daniel Lambertz, Majdi Rouis, Hamdi Jaafar, and Henry Vandewalle Copyright © 2015 Tarak Driss et al. All rights reserved. Modeling the Responses to Resistance Training in an Animal Experiment Study Wed, 28 Jan 2015 14:03:17 +0000 The aim of the present study was to test whether systems models of training effects on performance in athletes can be used to explore the responses to resistance training in rats. 11 Wistar Han rats (277 ± 15 g) underwent 4 weeks of resistance training consisting in climbing a ladder with progressive loads. Training amount and performance were computed from total work and mean power during each training session. Three systems models relating performance to cumulated training bouts have been tested: (i) with a single component for adaptation to training, (ii) with two components to distinguish the adaptation and fatigue produced by exercise bouts, and (iii) with an additional component to account for training-related changes in exercise-induced fatigue. Model parameters were fitted using a mixed-effects modeling approach. The model with two components was found to be the most suitable to analyze the training responses (; ). In conclusion, the accuracy in quantifying training loads and performance in a rodent experiment makes it possible to model the responses to resistance training. This modeling in rodents could be used in future studies in combination with biological tools for enhancing our understanding of the adaptive processes that occur during physical training. Antony G. Philippe, Guillaume Py, François B. Favier, Anthony M. J. Sanchez, Anne Bonnieu, Thierry Busso, and Robin Candau Copyright © 2015 Antony G. Philippe et al. All rights reserved. Dual Functions in Response to Heat Stress and Spermatogenesis: Characterization of Expression Profile of Small Heat Shock Proteins 9 and 10 in Goat Testis Thu, 22 Jan 2015 14:01:42 +0000 Small heat shock proteins 9 and 10 (HSPB9 and HSPB10) are two testis-specific expressed sHsps. The objective of this study was to investigate the mRNA expression profile of HSPB9 and HSPB10 in goat testis among the different seasons, ages, and environmental temperatures. Allocation of the two sHsps was also performed by immunohistochemistry. The results showed that the transcript levels of HSPB9 and HSPB10 were extremely high in the testis . The relative expression of HSBP9 and HSPB10 in testis showed a tendency to increase with age and then is maintained at the constant level after sexual maturity. HSPB9 and HSPB10 have significantly higher expression in the breeding season   and hot season . Both HSPB9 and HSPB10 were found to be upregulated by high-temperature stress in testis , and the expressions of Hsp70 and Hsp90 were also increased simultaneously . Immunohistochemistry analysis localized HSPB9 expressed in spermatogonia, spermatocytes, and round spermatids and HSPB10 expressed in the elongate spermatids. In epididymis, strongly staining signal of HSPB10 was detected in pseudostratified columnar epithelium. In conclusion, the two testis-specific sHsps are closely related to male reproduction and heat tolerance. The results could provide valuable data for the further studies on HSPB9 and HSPB10. Wenjuan Xun, Liguang Shi, Ting Cao, Chunping Zhao, Ping Yu, Dingfa Wang, Guanyu Hou, and Hanlin Zhou Copyright © 2015 Wenjuan Xun et al. All rights reserved. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function Sun, 18 Jan 2015 08:50:13 +0000 Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. Vaibhav P. Pai, Laura L. Hernandez, Malinda A. Stull, and Nelson D. Horseman Copyright © 2015 Vaibhav P. Pai et al. All rights reserved. Isoform Composition and Gene Expression of Thick and Thin Filament Proteins in Striated Muscles of Mice after 30-Day Space Flight Sun, 18 Jan 2015 08:35:19 +0000 Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft “BION-M” number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from “Flight” group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the “Flight” group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from “Flight” and “Control” groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness. Anna Ulanova, Yulia Gritsyna, Ivan Vikhlyantsev, Nikolay Salmov, Alexander Bobylev, Zarema Abdusalamova, Vadim Rogachevsky, Boris Shenkman, and Zoya Podlubnaya Copyright © 2015 Anna Ulanova et al. All rights reserved. Alterations in the Rate of Limb Movement Using a Lower Body Positive Pressure Treadmill Do Not Influence Respiratory Rate or Phase III Ventilation Wed, 14 Jan 2015 12:02:37 +0000 The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200). The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (). Naturally, to match the while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from to mph, which resulted in a significant increase in the mean step frequency (steps per minute) from at 3 mph (i.e., 100% of body weight) to at 4.1 mph (i.e., 50% of body weight). The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled. Michael J. Buono, Marissa Burnsed-Torres, Bethany Hess, Kristine Lopez, Catherine Ortiz, Ariel Girodo, Karen Lolli, Brett Bloom, David Bailey, and Fred W. Kolkhorst Copyright © 2015 Michael J. Buono et al. All rights reserved. Isoform-Specific Na,K-ATPase Alterations Precede Disuse-Induced Atrophy of Rat Soleus Muscle Tue, 13 Jan 2015 08:22:03 +0000 This study examines the isoform-specific effects of short-term hindlimb suspension (HS) on the Na,K-ATPase in rat soleus muscle. Rats were exposed to 24–72 h of HS and we analyzed the consequences on soleus muscle mass and contractile parameters; excitability and the resting membrane potential (RMP) of muscle fibers; the electrogenic activity, protein, and mRNA content of the α1 and α2 Na,K-ATPase; the functional activity and plasma membrane localization of the α2 Na,K-ATPase. Our results indicate that 24–72 h of HS specifically decreases the electrogenic activity of the Na,K-ATPase α2 isozyme and the RMP of soleus muscle fibers. This decrease occurs prior to muscle atrophy or any change in contractile parameters. The α2 mRNA and protein content increased after 24 h of HS and returned to initial levels at 72 h; however, even the increased content was not able to restore α2 enzyme activity in the disused soleus muscle. There was no change in the membrane localization of α2 Na,K-ATPase. The α1 Na,K-ATPase electrogenic activity, protein and mRNA content did not change. Our findings suggest that skeletal muscle use is absolutely required for α2 Na,K-ATPase transport activity and provide the first evidence that Na,K-ATPase alterations precede HS-induced muscle atrophy. Violetta V. Kravtsova, Vladimir V. Matchkov, Elena V. Bouzinova, Alexander N. Vasiliev, Irina A. Razgovorova, Judith A. Heiny, and Igor I. Krivoi Copyright © 2015 Violetta V. Kravtsova et al. All rights reserved. Comparison of Postural Responses to Galvanic Vestibular Stimulation between Pilots and the General Populace Tue, 06 Jan 2015 09:38:17 +0000 Galvanic vestibular stimulation (GVS) can be used to study the body’s response to vestibular stimuli. This study aimed to investigate whether postural responses to GVS were different between pilots and the general populace. Bilateral bipolar GVS was applied with a constant-current profile to 12 pilots and 12 control subjects via two electrodes placed over the mastoid processes. Both GVS threshold and the center of pressure’s trajectory (COP’s trajectory) were measured. Position variability of COP during spontaneous body sway and peak displacement of COP during GVS-induced body sway were calculated in the medial-lateral direction. Spontaneous body sway was slight for all subjects, and there was no significant difference in the value of COP position variability between the pilots and controls. Both the GVS threshold and magnitude of GVS-induced body deviation were similar for different GVS polarities. GVS thresholds were similar between the two groups, but the magnitude of GVS-induced body deviation in the controls was significantly larger than that in the pilots. The pilots showed less GVS-induced body deviation, meaning that pilots may have a stronger ability to suppress vestibular illusions. Yang Yang, Fang Pu, Xiaoning Lv, Shuyu Li, Jing Li, Deyu Li, Minggao Li, and Yubo Fan Copyright © 2015 Yang Yang et al. All rights reserved. Diseases of Pregnancy and Fetal Programming: Cell and Molecular Mechanisms Mon, 10 Nov 2014 06:38:46 +0000 Luis Sobrevia, Leslie Myatt, and Gregory Rice Copyright © 2014 Luis Sobrevia et al. All rights reserved. Unaffected Arm Muscle Hypercatabolism in Dysphagic Subacute Stroke Patients: The Effects of Essential Amino Acid Supplementation Sun, 09 Nov 2014 13:53:12 +0000 Alterations in muscle protein turnover of the unaffected side of stroke patients could contribute to physical disability. We investigated whether hypercatabolic activity occurred in unaffected arm muscle and whether supplemented essential amino acids (EAAs) could limit muscle hypercatabolism (MH). Thirty-eight dysphagic subacute stroke subjects (<3 months after acute event) (29 males + 9 females; 69.7 ± 11.4 yrs) were enrolled and randomized to receive 8 g/day EAAs (n = 19; EAA group) or isocaloric placebo (maltodextrin; n = 19, Plac group). Before randomization, all patients had their arterial (A) and venous (V) amino acids measured and muscle (A − V) differences calculated in the unaffected arm. Eight matched and healthy subjects served as controls. When compared to healthy controls, the entire stroke population showed significant muscle release (= negative value A − V) of the amino acid phenylalanine (phenyl-) indicating a prevalence of MH. Moreover, randomized EAA and Plac groups had similar rates of MH. After 38 days from the start of the protocol, the EAA group but not the Plac group had MH converted to balanced protein turnover or anabolic activity. We concluded that muscle protein metabolism of the unaffected arm of dysphagic subacute stroke individuals could be characterized by MH which can be corrected by supplemented EAAs. Roberto Aquilani, Mirella Boselli, Giuseppe D’Antona, Paola Baiardi, Federica Boschi, Simona Viglio, Paolo Iadarola, Evasio Pasini, Annalisa Barbieri, Maurizia Dossena, Andria Innocenza Bongiorno, and Manuela Verri Copyright © 2014 Roberto Aquilani et al. All rights reserved. Exercise Improves Immune Function, Antidepressive Response, and Sleep Quality in Patients with Chronic Primary Insomnia Sun, 21 Sep 2014 06:25:01 +0000 The aim of this study was to evaluate the effects of moderate aerobic exercise training on sleep, depression, cortisol, and markers of immune function in patients with chronic primary insomnia. Twenty-one sedentary participants (16 women aged 44.7 ± 9 years) with chronic primary insomnia completed a 4-month intervention of moderate aerobic exercise. Compared with baseline, polysomnographic data showed improvements following exercise training. Also observed were reductions in depression symptoms and plasma cortisol. Immunologic assays revealed a significant increase in plasma apolipoprotein A (140.9 ± 22 to 151.2 ± 22 mg/dL) and decreases in CD4 (915.6 ± 361 to 789.6 ± 310 mm3) and CD8 (532.4 ± 259 to 435.7 ± 204 mm3). Decreases in cortisol were significantly correlated with increases in total sleep time and REM sleep . In summary, long-term moderate aerobic exercise training improved sleep, reduced depression and cortisol, and promoted significant changes in immunologic variables. Giselle Soares Passos, Dalva Poyares, Marcos Gonçalves Santana, Alexandre Abílio de Souza Teixeira, Fábio Santos Lira, Shawn D. Youngstedt, Ronaldo Vagner Thomatieli dos Santos, Sergio Tufik, and Marco Túlio de Mello Copyright © 2014 Giselle Soares Passos et al. All rights reserved. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific Tue, 16 Sep 2014 08:39:12 +0000 We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (). SOL muscle demonstrated a specific reduction in UCP3 content (%; ). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. Martin Flück, Ruowei Li, Paola Valdivieso, Richard M. Linnehan, Josiane Castells, Per Tesch, and Thomas Gustafsson Copyright © 2014 Martin Flück et al. All rights reserved. The Possible Role of Extravillous Trophoblast-Derived Exosomes on the Uterine Spiral Arterial Remodeling under Both Normal and Pathological Conditions Sun, 14 Sep 2014 13:08:28 +0000 A tenet of contemporary obstetrics is that events that compromise placentation increase the risk of complications of pregnancy and contribute to poor pregnancy outcome. In particular, conditions that affect the invasion of placental cells and remodeling of uterine spiral arteries compromise placental function and the subsequent development of the fetus. Extravillous trophoblast cells (EVTs) proliferate and migrate from the cytotrophoblast in the anchoring villi of the placenta and invade the maternal decidua and myometrium. These cells are localised with uterine uterine spiral arteries and are thought to induce vascular remodeling. A newly identified pathway by which EVTs may regulate vascular remodeling within the uterus is via the release of exosomes. Trophoblast cells release exosomes that mediate aspects of cell-to-cell communication. The aim of this brief commentary is to review the putative role of exosomes released from extravillous trophoblast cells in uterine spiral artery remodeling and, in particular, their role in the aetiology of preeclampsia. Placental exosomes may engage in local cell-to-cell communication between the cell constituents of the placenta and contiguous maternal tissues and/or distal interactions, involving the release of placental exosomes into biological fluids and their transport to a remote site of action. Carlos Salomon, Sarah W. Yee, Murray D. Mitchell, and Gregory E. Rice Copyright © 2014 Carlos Salomon et al. All rights reserved. Early Onset Intrauterine Growth Restriction in a Mouse Model of Gestational Hypercholesterolemia and Atherosclerosis Wed, 10 Sep 2014 12:48:39 +0000 The susceptibility to develop atherosclerosis is increased by intrauterine growth restriction and prenatal exposure to maternal hypercholesterolemia. Here, we studied whether mouse gestational hypercholesterolemia and atherosclerosis affected fetal development and growth at different stages of gestation. Female LDLR KO mice fed a proatherogenic, high cholesterol (HC) diet for 3 weeks before conception and during pregnancy exhibited a significant increase in non-HDL cholesterol and developed atherosclerosis. At embryonic days 12.5 (E12.5), E15.5, and E18.5, maternal gestational hypercholesterolemia and atherosclerosis were associated to a 22–24% reduction in male and female fetal weight without alterations in fetal number/litter or morphology nor placental weight or structure. Feeding the HC diet exclusively at the periconceptional period did not alter fetal growth, suggesting that maternal hypercholesterolemia affected fetal weight only after implantation. Vitamin E supplementation (1,000 UI of α-tocopherol/kg) of HC-fed females did not change the mean weight of E18.5 fetuses but reduced the percentage of fetuses exhibiting body weights below the 10th percentile of weight (HC: 90% vs. HC/VitE: 68%). In conclusion, our results showed that maternal gestational hypercholesterolemia and atherosclerosis in mice were associated to early onset fetal growth restriction and that dietary vitamin E supplementation had a beneficial impact on this condition. Dolores Busso, Lilian Mascareño, Francisca Salas, Loni Berkowitz, Nicolás Santander, Alonso Quiroz, Ludwig Amigo, Gloria Valdés, and Attilio Rigotti Copyright © 2014 Dolores Busso et al. All rights reserved. A Comparison Study of Portable Foot-to-Foot Bioelectrical Impedance Scale to Measure Body Fat Percentage in Asian Adults and Children Thu, 28 Aug 2014 05:57:53 +0000 Objective. To compare the measurements of body fat percentage (BF%) using the foot-to-foot bioelectrical impedance analysis (FTF-BIA) with the direct segmental multifrequency BIA (DSM-BIA). Methods. There were 36 men and 52 women ( years) with 57% Malays, 30% Chinese, and 13% Indian. For children, there were 45 boys and 26 girls ( years) with 52% Malay, 15% Chinese, and 33% Indian. Results. Mean height for men was 168.4 cm, 11 cm taller than women. Men were 10 kg heavier than women at 70 kg. BF% in women was 32% and 33% whereas BF% in men was 23% and 25% when measured using FTF-BIA and DSM-BIA, respectively. In children, BF% measured with FTF-BIA and DSM-BIA was 49% and 46%, respectively. The correlations were significant for men (, SEE = 2.80), women (, SEE = 3.31), boys (, SEE = 5.44), and girls (, SEE = 5.27). The BF% in underweight/normal (, SEE = 2.47) and that in overweight/obese adults (, SEE = 3.61) were strongly correlated. The correlations were significant in normal/underweight (, SEE = 3.78) and obese/overweight children (, SEE = 6.49). All ethnic groups showed significant correlation with BF%. Malay adults (, SEE = 3.27) and children (, SEE = 0.88) showed significant mean differences in BF%. Conclusion. The FTF-BIA showed higher accuracy for all normal/underweight and Chinese group with acceptable overestimation in children and underestimation in adults. Caution should be taken when interpreting BF% depending on gender, BMI, and ethnicity. Pei Ying Sim, Tin Tin Su, Hazreen Abd Majid, Azmi Mohamed Nahar, and Muhammad Yazid Jalaludin Copyright © 2014 Pei Ying Sim et al. All rights reserved. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats Tue, 19 Aug 2014 00:00:00 +0000 We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. Shin-ichiro Katsuda, Masao Yamasaki, Hidefumi Waki, Masao Miyake, Hirotaka O-ishi, Kiyoaki Katahira, Tadanori Nagayama, Yukako Miyamoto, Masamitsu Hasegawa, Haruyuki Wago, Toshiyasu Okouchi, and Tsuyoshi Shimizu Copyright © 2014 Shin-ichiro Katsuda et al. All rights reserved. Evaluation of the Performance of Females as Light Infantry Soldiers Mon, 18 Aug 2014 12:59:44 +0000 A few countries permit women to serve in combat roles, but their long term performance in these positions has not been reported. The incidences of overuse injuries and attrition of 85 male and 235 female recruits in a light infantry brigade was followed in a three-year prospective study. Females were shorter (162 cm, CI 161–163 cm) than males (174 cm, CI 173–176), had more body fat (18.9 kg, CI 18.2–19.6 kg) than males (12.6 kg, 11.3–13.8 kg), had lower O2max (36.8 mL·min−1·kg−1, CI 35.8–37.78 mL·min−1·kg−1) than males (50.48 mL·min−1·kg−1, CI 48.4 to 52.48 mL·min−1·kg−1), had more stress fractures (21.0%, 95% CI 16.2–26.5%) than males (2.3%, CI 0.3–8.2%), and had more anterior knee pain (41.2%, CI 34.9–47.7%) than males (24.7%, CI 16.0–35.2%). Three-year attrition was 28% CI 22–34% for females and 37% CI 26–48% for males. The females in this study successfully served as light infantry soldiers. Their lower fitness and high incidence of overuse injuries might impede service as regular infantry soldiers. Aharon S. Finestone, Charles Milgrom, Ran Yanovich, Rachel Evans, Naama Constantini, and Daniel S. Moran Copyright © 2014 Aharon S. Finestone et al. All rights reserved. Morning/Evening Differences in Somatosensory Inputs for Postural Control Mon, 18 Aug 2014 06:28:37 +0000 The underlying processes responsible for the differences between morning and afternoon measurements of postural control have not yet been clearly identified. This study was conducted to specify the role played by vestibular, visual, and somatosensory inputs in postural balance and their link with the diurnal fluctuations of body temperature and vigilance level. Nineteen healthy male subjects (mean age: 20.5 ± 1.3 years) participated in test sessions at 6:00 a.m. and 6:00 p.m. after a normal night’s sleep. Temperature was measured before the subjects completed a sign cancellation test and a postural control evaluation with eyes both open and closed. Our results confirmed that postural control improved throughout the day according to the circadian rhythm of body temperature and sleepiness/vigilance. The path length as a function of surface ratio increased between 6:00 a.m. and 6:00 p.m. This is due to a decrease in the centre-of-pressure surface area, which is associated with an increase in path length. Romberg’s index did not change throughout the day; however, the spectral analysis (fast Fourier transform) of the centre-of-pressure excursions (in anteroposterior and mediolateral directions) indicated that diurnal fluctuations in postural control may occur via changes in the different processes responsible for readjustment via muscle contractions. Clément Bougard and Damien Davenne Copyright © 2014 Clément Bougard and Damien Davenne. All rights reserved. DNA Damage and Its Cellular Response in Mother and Fetus Exposed to Hyperglycemic Environment Thu, 14 Aug 2014 00:00:00 +0000 The increased production of reactive oxygen species (ROS) plays a key role in pathogenesis of diabetic complications. ROS are generated by exogenous and endogenous factors such as during hyperglycemia. When ROS production exceeds the detoxification and scavenging capacity of the cell, oxidative stress ensues. Oxidative stress induces DNA damage and when DNA damage exceeds the cellular capacity to repair it, the accumulation of errors can overwhelm the cell resulting in cell death or fixation of genome mutations that can be transmitted to future cell generations. These mutations can lead to and/or play a role in cancer development. This review aims at (i) understanding the types and consequences of DNA damage during hyperglycemic pregnancy; (ii) identifying the biological role of DNA repair during pregnancy, and (iii) proposing clinical interventions to maintain genome integrity. While hyperglycemia can damage the maternal genetic material, the impact of hyperglycemia on fetal cells is still unclear. DNA repair mechanisms may be important to prevent the deleterious effects of hyperglycemia both in mother and in fetus DNA and, as such, prevent the development of diseases in adulthood. Hence, in clinical practice, maternal glycemic control may represent an important point of intervention to prevent the deleterious effects of maternal hyperglycemia to DNA. Jusciele Brogin Moreli, Janine Hertzog Santos, Clarissa Ribeiro Rocha, Débora Cristina Damasceno, Glilciane Morceli, Marilza Vieira Rudge, Estela Bevilacqua, and Iracema Mattos Paranhos Calderon Copyright © 2014 Jusciele Brogin Moreli et al. All rights reserved. Changes in Biochemical, Strength, Flexibility, and Aerobic Capacity Parameters after a 1700 km Ultraendurance Cycling Race Sun, 10 Aug 2014 13:05:23 +0000 The purpose of the present research was to study the organic response after ultraendurance cycling race. Selected biochemical, leg strength, flexibility, and aerobic capacity parameters were analyzed in 6 subjects 5 days before and 5 days after completing a 1700 km ultraendurance cycling race. After the race, participants presented a significant decrease in Hb (167.8 ± 9.5 versus 141.6 ± 15.7 mg/dL), strength (29.4 ± 2.7 versus 25.5 ± 3.7 cm in a countermovement jump), and oxygen uptake and heart rate at ventilatory threshold (1957.0 ± 458.4 versus 1755.2 ± 281.5 mL/kg/min and 140.0 ± 9.7 versus 130.8 ± 8.3 bpm, resp.). Testosterone presented a decrease tendency (4.2 ± 2.5 versus 3.9 ± 2.6 ng/L) in opposition to the increase tendency of cortisol and ammonium parameters. Transferrin and iron levels presented high values related to an overstimulation of the liver, a normal renal function, a tendency to decrease flexibility, and an increase in aerobic capacity, finding a tendency to increase the absolute maximal oxygen uptake (37.2 ±2.4 versus 38.7 ± 1.8 mL/min) in contrast to previous studies conducted with subjects with similar age. These results can be used to program training interventions, recovery times between probes, and nutritional and/or ergonomic strategies in ultraendurance events. Vicente Javier Clemente-Suarez Copyright © 2014 Vicente Javier Clemente-Suarez. All rights reserved. Effect of Hypoxia on the Calcium and Magnesium Content, Lipid Peroxidation Level, and Ca2+-ATPase Activity of Syncytiotrophoblast Plasma Membranes from Placental Explants Thu, 07 Aug 2014 07:21:25 +0000 In the current study the possible relationship between the Ca2+/Mg2+ ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca2+-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca2+ content, diminished their Ca2+-ATPase activity, and kept their Mg2+ content unchanged. Membranes preincubated with different concentrations of Ca2+ increased their Ca2+ content without changes in their Mg2+ content. There is a direct relationship between Ca2+ content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca2+ content and Ca2+-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg2+ showed a higher Mg2+ content without changing their lipid peroxidation and Ca2+-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca2+-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca2+ content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg2+ might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals. Delia I. Chiarello, Reinaldo Marín, Fulgencio Proverbio, Zully Benzo, Sandy Piñero, Desirée Botana, and Cilia Abad Copyright © 2014 Delia I. Chiarello et al. All rights reserved. The Characterization of Biological Rhythms in Mild Cognitive Impairment Thu, 17 Jul 2014 00:00:00 +0000 Introduction. Patients with dementia, especially Alzheimer’s disease, present several circadian impairments related to an accelerated perturbation of their biological clock that is caused by the illness itself and not merely age-related. Thus, the objective of this work was to elucidate whether these circadian system alterations were already present in patients with mild cognitive impairment (MCI), as compared to healthy age-matched subjects. Methods. 40 subjects (21 patients diagnosed with MCI, 74.1 ± 1.5 y.o., and 19 healthy subjects, 71.7 ± 1.4 y.o.) were subjected to ambulatory monitoring, recording wrist skin temperature, motor activity, body position, and the integrated variable TAP (including temperature, activity, and position) for one week. Nonparametrical analyses were then applied. Results. MCI patients exhibited a significant phase advance with respect to the healthy group for the following phase markers: temperature M5 (mean ± SEM: 04:20 ± 00:21 versus 02:52 ± 00:21) and L10 (14:35 ± 00:27 versus 13:24 ± 00:16) and TAP L5 (04:18 ± 00:14 versus 02:55 ± 00:30) and M10 (14:30 ± 00:18 versus 13:28 ± 00:23). Conclusions. These results suggest that significant advances in the biological clock begin to occur in MCI patients, evidenced by an accelerated aging of the circadian clock, as compared to a healthy population of the same age. Elisabet Ortiz-Tudela, Antonio Martinez-Nicolas, Carmen Díaz-Mardomingo, Sara García-Herranz, Inmaculada Pereda-Pérez, Azucena Valencia, Herminia Peraita, César Venero, Juan Antonio Madrid, and Maria Angeles Rol Copyright © 2014 Elisabet Ortiz-Tudela et al. All rights reserved. Postactivation Potentiation Biases Maximal Isometric Strength Assessment Tue, 15 Jul 2014 12:15:30 +0000 Postactivation potentiation (PAP) is known to enhance force production. Maximal isometric strength assessment protocols usually consist of two or more maximal voluntary isometric contractions (MVCs). The objective of this study was to determine if PAP would influence isometric strength assessment. Healthy male volunteers () performed two five-second MVCs separated by a 180-seconds interval. Changes in isometric peak torque (IPT), time to achieve it (tPTI), contractile impulse (CI), root mean square of the electromyographic signal during PTI (RMS), and rate of torque development (RTD), in different intervals, were measured. Significant increases in IPT (240.6 ± 55.7 N·m versus 248.9 ± 55.1 N·m), RTD (746 ± 152 N·m·s−1versus 727 ± 158 N·m·s−1), and RMS (59.1 ± 12.2%   versus 54.8 ± 9.4% ) were found on the second MVC. tPTI decreased significantly on the second MVC (2373 ± 1200 ms versus 2784 ± 1226 ms). We conclude that a first MVC leads to PAP that elicits significant enhancements in strength-related variables of a second MVC performed 180 seconds later. If disconsidered, this phenomenon might bias maximal isometric strength assessment, overestimating some of these variables. Leonardo Coelho Rabello Lima, Felipe Bruno Dias Oliveira, Thiago Pires Oliveira, Claudio de Oliveira Assumpção, Camila Coelho Greco, Adalgiso Croscato Cardozo, and Benedito Sérgio Denadai Copyright © 2014 Leonardo Coelho Rabello Lima et al. All rights reserved. Perinatal Nitric Oxide Therapy Prevents Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Tue, 08 Jul 2014 12:03:09 +0000 Adverse events in utero are associated with the occurrence of chronic diseases in adulthood. We previously demonstrated in mice that perinatal hypoxia resulted in altered pulmonary circulation in adulthood, with a decreased endothelium-dependent relaxation of pulmonary arteries, associated with long-term alterations in the nitric oxide (NO)/cyclic GMP pathway. The present study investigated whether inhaled NO (iNO) administered simultaneously to perinatal hypoxia could have potential beneficial effects on the adult pulmonary circulation. Indeed, iNO is the therapy of choice in humans presenting neonatal pulmonary hypertension. Long-term effects of neonatal iNO therapy on adult pulmonary circulation have not yet been investigated. Pregnant mice were placed in hypoxia (13% O2) with simultaneous administration of iNO 5 days before delivery until 5 days after birth. Pups were then raised in normoxia until adulthood. Perinatal iNO administration completely restored acetylcholine-induced relaxation, as well as endothelial nitric oxide synthase protein content, in isolated pulmonary arteries of adult mice born in hypoxia. Right ventricular hypertrophy observed in old mice born in hypoxia compared to controls was also prevented by perinatal iNO treatment. Therefore, simultaneous administration of iNO during perinatal hypoxic exposure seems able to prevent adverse effects of perinatal hypoxia on the adult pulmonary circulation. Anne-Christine Peyter, Flavien Delhaes, Giacomo Diaceri, Steeve Menétrey, and Jean-François Tolsa Copyright © 2014 Anne-Christine Peyter et al. All rights reserved. New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases Mon, 07 Jul 2014 07:13:09 +0000 Obesity is a major health problem strongly increasing the risk for various severe related complications such as metabolic syndrome, cardiovascular diseases, respiratory disorders, diabetic retinopathy, and cancer. Adipose tissue is an endocrine organ that produces biologically active molecules defined “adipocytokines,” protein hormones with pleiotropic functions involved in the regulation of energy metabolism as well as in appetite, insulin sensitivity, inflammation, atherosclerosis, cell proliferation, and so forth. In obesity, fat accumulation causes dysregulation of adipokine production that strongly contributes to the onset of obesity-related diseases. Several advances have been made in the treatment and prevention of obesity but current medical therapies are often unsuccessful even in compliant patients. Among the adipokines, adiponectin shows protective activity in various processes such as energy metabolism, inflammation, and cell proliferation. In this review, we will focus on the current knowledge regarding the protective properties of adiponectin and its receptors, AdipoRs (“adiponectin system”), on metabolic complications in obesity and obesity-related diseases. Adiponectin, exhibiting antihyperglycemic, antiatherogenic, and anti-inflammatory properties, could have important clinical benefits in terms of development of therapies for the prevention and/or for the treatment of obesity and obesity-related diseases. Ersilia Nigro, Olga Scudiero, Maria Ludovica Monaco, Alessia Palmieri, Gennaro Mazzarella, Ciro Costagliola, Andrea Bianco, and Aurora Daniele Copyright © 2014 Ersilia Nigro et al. All rights reserved. Role of Lectin-Like Oxidized Low Density Lipoprotein-1 in Fetoplacental Vascular Dysfunction in Preeclampsia Sun, 06 Jul 2014 09:59:24 +0000 The bioavailability of nitric oxide (NO) represents a key marker in vascular health. A decrease in NO induces a pathological condition denominated endothelial dysfunction, syndrome observed in different pathologies, such as obesity, diabetes, kidney disease, cardiovascular disease, and preeclampsia (PE). PE is one of the major risks for maternal death and fetal loss. Recent studies suggest that the placenta of pregnant women with PE express high levels of lectin-like oxidized LDL receptor-1 (LOX-1), which induces endothelial dysfunction by increasing reactive oxygen species (ROS) and decreasing intracellular NO. Besides LOX-1 activation induces changes in migration and apoptosis of syncytiotrophoblast cells. However, the role of this receptor in placental tissue is still unknown. In this review we will describes the physiological roles of LOX-1 in normal placenta development and the potential involvement of this receptor in the pathophysiology of PE. Felipe A. Zuniga, Valeska Ormazabal, Nicolas Gutierrez, Valeria Aguilera, Claudia Radojkovic, Carlos Veas, Carlos Escudero, Liliana Lamperti, and Claudio Aguayo Copyright © 2014 Felipe A. Zuniga et al. All rights reserved. Prolonged Sleep Deprivation and Continuous Exercise: Effects on Melatonin, Tympanic Temperature, and Cognitive Function Sun, 06 Jul 2014 06:30:27 +0000 The purpose of this study was to examine tympanic temperature, melatonin, and cognitive function during a 36-hour endurance event. Nine male and three female participants took part in a 36-hour sustained endurance event without sleep (, mean age = yrs). Participants were stopped for data collection at checkpoints throughout the 36-hour event. Tympanic temperature was assessed, a psychomotor vigilance test (PVT) was administered, and saliva samples were collected. Salivary melatonin was determined via immunoassay. During the 36 hours of competition, melatonin levels were negatively correlated with the day of the race (, ) and positively associated with nighttime (, ). Significant main effects of tympanic temperature (), day of the competition (), and a tympanic temperature day of competition interaction () were used to predict minor lapses in attention. No associations between melatonin levels and cognitive function were observed (). During the event tympanic temperature declined and was associated with an increase in lapses in attention. With sustained endurance events becoming more popular future research is warranted to evaluate the physiological impact of participation. Greggory R. Davis, Corey E. Etheredge, Lena Marcus, and David Bellar Copyright © 2014 Greggory R. Davis et al. All rights reserved. Physiology to the Pleiotropic Role of RNAs: Prospecting Novel Therapies Tue, 01 Jul 2014 12:04:07 +0000 Maria Chiara Maiuri, Daniela De Stefano, and Ammad Ahmad Farooqi Copyright © 2014 Maria Chiara Maiuri et al. All rights reserved. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation Mon, 30 Jun 2014 00:00:00 +0000 The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. Francisco Westermeier, Pablo J. Sáez, Roberto Villalobos-Labra, Luis Sobrevia, and Marcelo Farías-Jofré Copyright © 2014 Francisco Westermeier et al. All rights reserved. Anthropometric Characteristics and Sex Influence Magnitude of Skin Cooling following Exposure to Whole Body Cryotherapy Sun, 29 Jun 2014 08:26:49 +0000 This study explored whether anthropometric measures influence magnitude of skin cooling following exposure to whole body cryotherapy (WBC). Height, weight, body fat percentage, and lean mass were measured in 18 male and 14 female participants. Body surface area, body surface area to mass ratio, body mass index, fat-free mass index, and fat mass index were calculated. Thermal images were captured before and after WBC (−60°C for 30 seconds, −110°C for 2 minutes). Skin temperature was measured at the chest, arm, thigh, and calf. Mean skin temperature before and after WBC and change in mean skin temperature were calculated. was significantly greater in females (°C) than males (°C; , ). A significant relationship was observed between body fat percentage and in the combined dataset (, ) and between fat-free mass index and in males (, ). No other significant associations were found. Skin response of individuals to WBC appears to depend upon anthropometric variables and sex, with individuals with a higher adiposity cooling more than thinner individuals. Effects of sex and anthompometrics should be considered when designing WBC research or treatment protocols. L. E. Hammond, S. Cuttell, P. Nunley, and J. Meyler Copyright © 2014 L. E. Hammond et al. All rights reserved. Effects of a Meal on the Hemorheologic Responses to Exercise in Young Males Thu, 26 Jun 2014 00:00:00 +0000 Aim. This study investigates the changes in hemorheologic parameters resulting from exercise followed by a standard meal. Methods. In twelve moderately active men a period of exercise on a bicycle ergometer for 30 min at 60% was followed by a test meal or by 30 min rest. Venous blood was sampled for further analysis at baseline, after exercise, and after the meal/rest period. Results. The elongation index (EI) was reduced and a marked rise in plasma viscosity was observed after exercise. A significant decrease in half time of total aggregation (T1/2) and a rise in aggregation index (AI) after exercise were observed; however, after the postexercise period these changes were reversed. Conclusion. The present study demonstrates that physical exercise causes several changes in blood rheology parameters, such as an increase of blood viscosity, a decrease in EI and an increase in AI, and a fall in the T1/2 values. The meal eaten in the postexercise period caused a further reduction in EI values indicating higher red cell rigidity, but not in plasma viscosity or aggregations indices. Such alterations in hemorheologic parameters should not impair the function of the cardiovascular system in fit and healthy people but it could constitute a serious risk under various pathophysiological conditions. Jan Bilski, Aneta Teległów, Janusz Pokorski, Jacek Nitecki, Joanna Pokorska, Ewa Nitecka, Anna Marchewka, Zbigniew Dąbrowski, and Jakub Marchewka Copyright © 2014 Jan Bilski et al. All rights reserved. Angiotensin Converting Enzyme Inhibition Reduces Cardiovascular Responses to Acute Stress in Myocardially Infarcted and Chronically Stressed Rats Thu, 19 Jun 2014 00:00:00 +0000 Previous studies showed that chronically stressed and myocardially infarcted rats respond with exaggerated cardiovascular responses to acute stress. The present experiments were designed to elucidate whether this effect can be abolished by treatment with the angiotensin converting enzyme (ACE) inhibitor captopril. Sprague Dawley rats were subjected either to sham surgery (Groups 1 and 2) or to myocardial infarction (Groups 3 and 4). The rats of Groups 2 and 4 were also exposed to mild chronic stressing. Four weeks after the operation, mean arterial blood pressure (MABP) and heart rate (HR) were measured under resting conditions and after application of acute stress. The cardiovascular responses to the acute stress were determined again 24 h after administration of captopril orally. Captopril significantly reduced resting MABP in each group. Before administration of captopril, the maximum increases in MABP evoked by the acute stressor in all (infarcted and sham-operated) chronically stressed rats and also in the infarcted nonchronically stressed rats were significantly greater than in the sham-operated rats not exposed to chronic stressing. These differences were abolished by captopril. The results suggest that ACE may improve tolerance of acute stress in heart failure and during chronic stressing. A. Cudnoch-Jedrzejewska, K. Czarzasta, L. Puchalska, J. Dobruch, O. Borowik, J. Pachucki, and E. Szczepanska-Sadowska Copyright © 2014 A. Cudnoch-Jedrzejewska et al. All rights reserved. Hemodynamic Indexes Derived from Computed Tomography Angiography to Predict Pulmonary Embolism Related Mortality Wed, 18 Jun 2014 08:28:07 +0000 Pulmonary embolism (PE) induces an acute increase in the right ventricle afterload that can lead to right-ventricular dysfunction (RVD) and eventually to circulatory collapse. Hemodynamic status and presence of RVD are important determinants of adverse outcomes in acute PE. Technologic progress allows computed tomography angiography (CTA) to give more information than accurate diagnosis of PE. It may also provide an insight into hemodynamics and right-ventricular function. Proximal localization of emboli, reflux of contrast medium to the hepatic veins, and right-to-left short-axis ventricular diameter ratio seem to be the most relevant CTA predictors of 30-day mortality. These elements require little postprocessing time, an advantage in the emergency room. We herein review the prognostic value of RVD and other CTA mortality predictors for patients with acute PE. Gregor John, Christophe Marti, Pierre-Alexandre Poletti, and Arnaud Perrier Copyright © 2014 Gregor John et al. All rights reserved. Kinetics and Metabolic Contributions Whilst Swimming at 95, 100, and 105% of the Velocity at Wed, 18 Jun 2014 00:00:00 +0000 A bioenergetical analysis of swimming at intensities near competitive distances is inexistent. It was aimed to compare the transient kinetics responses and metabolic contributions whilst swimming at different velocities around . 12 trained male swimmers performed (i) an incremental protocol to determine the velocity at () and (ii) three square wave exercises from rest to 95, 100, and 105% of . was directly measured using a telemetric portable gas analyser and its kinetics analysed through a double-exponential model. Metabolic contributions were assessed through the sum of three energy components. No differences were observed in the fast component response (—15, 18, and 16 s, —36, 34, and 37 , and Gain—32, 29, and 30  at 95, 100, and 105% of the , resp.) but A2 was higher in 95 and 100% compared to 105% intensity (480.76 ± 247.01, 452.18 ± 217.04, and 147.04 ± 60.40 , resp.). The aerobic energy contribution increased with the time sustained (83 ± 5, 74 ± 6, and 59 ± 7% for 95, 100, and 105%, resp.). The adjustment of the cardiovascular and/or pulmonary systems that determine delivery and diffusion to the exercising muscles did not change with changing intensity, with the exception of slow component kinetics metabolic profiles. Ana C. Sousa, João P. Vilas-Boas, and Ricardo J. Fernandes Copyright © 2014 Ana C. Sousa et al. All rights reserved. Associations of Prenatal Growth with Metabolic Syndrome, Insulin Resistance, and Nutritional Status in Chilean Children Sun, 15 Jun 2014 08:08:27 +0000 Introduction. The association of prenatal growth with nutritional status, metabolic syndrome (MS), and insulin resistance (IR) was studied in school-age children. Methods. A retrospective cohort study was designed linking present data of children with perinatal records. 3325 subjects were enrolled. Anthropometry, blood pressure (BP), and pubertal status were assessed. Blood lipids, glucose, and insulin were measured. Linear associations were assessed using the Cochran-Armitage test. Odds ratios and nonlinear associations were computed. Results. 3290 children (52% females, mean age of 11.4 ± 1 years) were analyzed. Prevalence of obesity, stunting, MS, and IR was 16.0%, 3.6%, 7.3%, and 25.5%, respectively. The strongest positive association was between birth weight (BW) and obesity (OR 2.97 (95% CI 2.01–4.40) at BW ≥ 4,000 g compared to BW 2,500–2,999). The strongest inverse association was between birth length (BL) and stunting (OR 8.70 (95% CI 3.66–20.67) at BL < 48 cm compared to BL 52-53 cm). A U-shaped association between BL and BP ≥ 90th percentile was observed. Significant ORs were also found for MS and IR. Adjustments for present fat mass increased or maintained the most prenatal growth influences. Conclusions. Prenatal growth influences MS, IR, and nutritional status. Prenatal growth was more important than present body composition in determining these outcomes. Francisco Mardones, Pilar Arnaiz, Paz Pacheco, Angelica Dominguez, Luis Villarroel, Johan G. Eriksson, Salesa Barja, Marcelo Farías, and Oscar Castillo Copyright © 2014 Francisco Mardones et al. All rights reserved. Docosahexaenoic Acid Supplementation Early in Pregnancy May Prevent Deep Placentation Disorders Thu, 12 Jun 2014 12:59:11 +0000 Uteroplacental ischemia may cause preterm birth, either due to preterm labor, preterm premature rupture of membranes, or medical indication (in the presence of preeclampsia or fetal growth restriction). Uteroplacental ischemia is the product of defective deep placentation, a failure of invasion, and transformation of the spiral arteries by the trophoblast. The failure of normal placentation generates a series of clinical abnormalities nowadays called “deep placentation disorders”; they include preeclampsia, fetal growth restriction, preterm labor, preterm premature rupture of membranes, in utero fetal death, and placental abruption. Early reports suggested that a LC-PUFAs (long chain polyunsaturated fatty acids) rich diet reduces the incidence of deep placentation disorders. Recent randomized controlled trials are inconsistent to show the benefit of docosahexaenoic acid (DHA) supplementation during pregnancy to prevent deep placentation disorders, but most of them showed that DHA supplementation was associated with lower risk of early preterm birth. We postulate that DHA supplementation, early in pregnancy, may reduce the incidence of deep placentation disorders. If our hypothesis is correct, DHA supplementation, early in pregnancy, will become a safe and effective strategy for primary prevention of highly relevant pregnancy diseases, such as preterm birth, preeclampsia, and fetal growth restriction. Jorge A. Carvajal Copyright © 2014 Jorge A. Carvajal. All rights reserved. The Influence of Hypoxia during Different Pregnancy Stages on Cardiac Collagen Accumulation in the Adult Offspring Wed, 11 Jun 2014 12:45:46 +0000 We evaluated whether the timing of maternal hypoxia during pregnancy influenced cardiac extracellular matrix accumulation in the adult offspring. Rats in different periods of pregnancy were assigned to maternal hypoxia or control groups. Maternal hypoxia from day 3 to 21 of pregnancy or day 9 to 21 of pregnancy increased collagen I and collagen III expression in the left ventricle of adult offspring (both ). Maternal hypoxia from day 15 to 21 of pregnancy had no effect on adult collagen levels. Our results indicate that maternal hypoxia at critical windows of cardiovascular development can induce pathological cardiac remodeling in the adult rat offspring. Lingxing Wang, Meimei Li, Ziyang Huang, and Zhenhua Wang Copyright © 2014 Lingxing Wang et al. All rights reserved. Evaluation of Cardiac Function Index as Measured by Transpulmonary Thermodilution as an Indicator of Left Ventricular Ejection Fraction in Cardiogenic Shock Wed, 11 Jun 2014 08:21:36 +0000 Introduction. The PiCCO transpulmonary thermodilution technique provides two indices of cardiac systolic function, the cardiac function index (CFI) and the global ejection fraction (GEF). Both appear to be correlated with left ventricular ejection fraction (LVEF) measured by echocardiography in patients with circulatory failure, especially in septic shock. The aim of the present study was to test the reliability of CFI as an indicator of LVEF in patients with cardiogenic shock. Methods. In thirty-five patients with cardiogenic shock, we performed (i) simultaneous measurements of echocardiography LVEF and cardiac function index assessed by transpulmonary thermodilution () and (ii) transpulmonary thermodilution before/after increasing inotropic agents (). Results. Mean LVEF was 31% (+/−11.7), CFI 3/min (+/−1), and GEF 14.2% (+/−6). CFI and GEF were both positively correlated with LVEF (, ). CFI and GEF were significantly increased with inotropic infusion (resp., , ). A cardiac function index <3.47/min predicted a left ventricular ejection fraction ≤35% (sensitivity 81.1% and specificity 63%). In patients with right ventricular dysfunction, CFI was not correlated with LVEF. Conclusion. CFI is correlated with LVEF provided that patient does not present severe right ventricular dysfunction. Thus, the PiCCO transpulmonary thermodilution technique is useful for the monitoring of inotropic therapy during cardiogenic shock. Jessica Perny, Antoine Kimmoun, Pierre Perez, and Bruno Levy Copyright © 2014 Jessica Perny et al. All rights reserved. Analysis of the Response Speed of Musculature of the Knee in Professional Male and Female Volleyball Players Mon, 09 Jun 2014 07:04:14 +0000 The aim of this study was to evaluate the normalized response speed (Vrn) of the knee musculature (flexor and extensor) in high competitive level volleyball players using tensiomyography (TMG) and to analyze the muscular response of the vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), and biceps femoris (BF) in accordance with the specific position they play in their teams. One hundred and sixty-six players (83 women and 83 men) were evaluated. They belonged to eight teams in the Spanish women’s superleague and eight in the Spanish men’s superleague. The use of Vrn allows avoiding possible sample imbalances due to anatomical and functional differences and demands. We found differences between Vrn in each of the muscles responsible for extension (VM, RF, and VL) and flexion (BF) regardless of the sex. Normalized response speed differences seem to be larger in setters, liberos and outside players compared to middle blockers and larger in males when compared to females. These results of Vrn might respond to the differences in the physical and technical demands of each specific position, showing an improved balance response of the knee extensor and flexor musculature in male professional volleyball players. D. Rodríguez-Ruiz, I. Diez-Vega, D. Rodríguez-Matoso, M. Fernandez-del-Valle, R. Sagastume, and J. J. Molina Copyright © 2014 D. Rodríguez-Ruiz et al. All rights reserved. Inhibition of Hepatitis B Virus Replication by Helper Dependent Adenoviral Vectors Expressing Artificial Anti-HBV Pri-miRs from a Liver-Specific Promoter Thu, 05 Jun 2014 07:31:51 +0000 Research on applying RNA interference (RNAi) to counter HBV replication has led to identification of potential therapeutic sequences. However, before clinical application liver-specific expression and efficient delivery of these sequences remain an important objective. We recently reported short-term inhibition of HBV replication in vivo by using helper dependent adenoviral vectors (HD Ads) expressing anti-HBV sequences from a constitutively active cytomegalovirus (CMV) promoter. To develop the use of liver-specific transcription regulatory elements we investigated the utility of the murine transthyretin (MTTR) promoter for expression of anti-HBV primary microRNAs (pri-miRs). HD Ads containing MTTR promoter effected superior expression of anti-HBV pri-miRs in mice compared to HD Ads containing the CMV promoter. MTTR-containing HD Ads resulted in HBV replication knockdown of up to 94% in mice. HD Ads expressing trimeric anti-HBV pri-miRs silenced HBV replication for 5 weeks. We previously showed that the product of the codelivered lacZ gene induces an immune response, and the duration of HBV silencing in vivo is likely to be attenuated by this effect. Nevertheless, expression of anti-HBV pri-miRs from MTTR promoter is well suited to countering HBV replication and development of HD Ads through attenuation of their immunostimulatory effects should advance their clinical utility. Mohube Betty Mowa, Carol Crowther, Abdullah Ely, and Patrick Arbuthnot Copyright © 2014 Mohube Betty Mowa et al. All rights reserved. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue Wed, 04 Jun 2014 09:51:55 +0000 The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (), while NSM5 associated best with level of muscle contraction (%MVC) (). Both of these features were not affected by the intersubject variations (). Sridhar P. Arjunan, Dinesh K. Kumar, and Ganesh Naik Copyright © 2014 Sridhar P. Arjunan et al. All rights reserved. Effect of Dietary Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats Mon, 02 Jun 2014 11:04:00 +0000 The aim of this work was to determine the effect of dietary PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with the EPAX diet (enriched in PUFAs), by streptozotocin. The macrosomic pups were killed at birth (day 0) and at adulthood (day 90). Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC), hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation. B. Guermouche, N. A. Soulimane-Mokhtari, S. Bouanane, H. Merzouk, S. Merzouk, and M. Narce Copyright © 2014 B. Guermouche et al. All rights reserved. Numerical Simulation and Clinical Implications of Stenosis in Coronary Blood Flow Mon, 02 Jun 2014 00:00:00 +0000 Fractional flow reserve (FFR) is the gold standard to guide coronary interventions. However it can only be obtained via invasive angiography. The objective of this study is to propose a noninvasive method to determine by combining computed tomography angiographic (CTA) images and computational fluid dynamics (CFD) technique. Utilizing the method, this study explored the effects of diameter stenosis (DS), stenosis length, and location on . The baseline left anterior descending (LAD) model was reconstructed from CTA of a healthy porcine heart. A series of models were created by adding an idealized stenosis (with DS from 45% to 75%, stenosis length from 4 mm to 16 mm, and at 4 locations separately). Through numerical simulations, it was found that decreased (from 0.89 to 0.74), when DS increased (from 45% to 75%). Similarly, decreased with the increase of stenosis length and the stenosis located at proximal position had lower than that at distal position. These findings are consistent with clinical observations. Applying the same method on two patients’ CTA images yielded close to the FFR values obtained via invasive angiography. The proposed noninvasive computation of is promising for clinical diagnosis of CAD. Jun-Mei Zhang, Liang Zhong, Tong Luo, Yunlong Huo, Swee Yaw Tan, Aaron Sung Lung Wong, Boyang Su, Min Wan, Xiaodan Zhao, Ghassan S. Kassab, Heow Pueh Lee, Boo Cheong Khoo, Chang-Wei Kang, Te Ba, and Ru San Tan Copyright © 2014 Jun-Mei Zhang et al. All rights reserved. Streptozotocin-Induced Diabetes Models: Pathophysiological Mechanisms and Fetal Outcomes Tue, 27 May 2014 12:31:12 +0000 Glucose homeostasis is controlled by endocrine pancreatic cells, and any pancreatic disturbance can result in diabetes. Because 8% to 12% of diabetic pregnant women present with malformed fetuses, there is great interest in understanding the etiology, pathophysiological mechanisms, and treatment of gestational diabetes. Hyperglycemia enhances the production of reactive oxygen species, leading to oxidative stress, which is involved in diabetic teratogenesis. It has also been suggested that maternal diabetes alters embryonic gene expression, which might cause malformations. Due to ethical issues involving human studies that sometimes have invasive aspects and the multiplicity of uncontrolled variables that can alter the uterine environment during clinical studies, it is necessary to use animal models to better understand diabetic pathophysiology. This review aimed to gather information about pathophysiological mechanisms and fetal outcomes in streptozotocin-induced diabetic rats. To understand the pathophysiological mechanisms and factors involved in diabetes, the use of pancreatic regeneration studies is increasing in an attempt to understand the behavior of pancreatic beta cells. In addition, these studies suggest a new preventive concept as a treatment basis for diabetes, introducing therapeutic efforts to minimize or prevent diabetes-induced oxidative stress, DNA damage, and teratogenesis. D. C. Damasceno, A. O. Netto, I. L. Iessi, F. Q. Gallego, S. B. Corvino, B. Dallaqua, Y. K. Sinzato, A. Bueno, I. M. P. Calderon, and M. V. C. Rudge Copyright © 2014 D. C. Damasceno et al. All rights reserved. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations Sun, 25 May 2014 11:04:52 +0000 Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD-) induced nonalcoholic fatty liver disease (NAFLD) in mice and tested the effects of docosahexaenoic acid (DHA) and lysine during a four-week regular chow (RC)feeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1), was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD. Hsin-Yu Lin, Chih-Chien Chen, Yu-Jen Chen, Yuan-Yu Lin, Harry J. Mersmann, and Shih-Torng Ding Copyright © 2014 Hsin-Yu Lin et al. All rights reserved. Relationship between Stroke Volume and Pulse Pressure during Blood Volume Perturbation: A Mathematical Analysis Tue, 20 May 2014 11:50:15 +0000 Arterial pulse pressure has been widely used as surrogate of stroke volume, for example, in the guidance of fluid therapy. However, recent experimental investigations suggest that arterial pulse pressure is not linearly proportional to stroke volume. However, mechanisms underlying the relation between the two have not been clearly understood. The goal of this study was to elucidate how arterial pulse pressure and stroke volume respond to a perturbation in the left ventricular blood volume based on a systematic mathematical analysis. Both our mathematical analysis and experimental data showed that the relative change in arterial pulse pressure due to a left ventricular blood volume perturbation was consistently smaller than the corresponding relative change in stroke volume, due to the nonlinear left ventricular pressure-volume relation during diastole that reduces the sensitivity of arterial pulse pressure to perturbations in the left ventricular blood volume. Therefore, arterial pulse pressure must be used with care when used as surrogate of stroke volume in guiding fluid therapy. Ramin Bighamian and Jin-Oh Hahn Copyright © 2014 Ramin Bighamian and Jin-Oh Hahn. All rights reserved. Maternal Obesity, Inflammation, and Developmental Programming Tue, 20 May 2014 00:00:00 +0000 The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming. Stephanie A. Segovia, Mark H. Vickers, Clint Gray, and Clare M. Reynolds Copyright © 2014 Stephanie A. Segovia et al. All rights reserved. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa Sun, 18 May 2014 11:45:48 +0000 Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. Jigna G. Tank and Vrinda S. Thaker Copyright © 2014 Jigna G. Tank and Vrinda S. Thaker. All rights reserved. Endothelium-Independent Vasorelaxant Effects of Hydroalcoholic Extract from Nigella sativa Seed in Rat Aorta: The Roles of Ca2+ and K+ Channels Mon, 12 May 2014 10:09:51 +0000 Objective. The aim of this study was to elucidate the mechanism(s) responsible for the vasorelaxant effect of Nigella sativa (N. sativa). Methods. The activity of different concentrations of N. sativa extract was evaluated on contractile responses of isolated aorta to KCl and phenylephrine (PE). Results. The extract (2–14 mg/mL) induced a concentration dependent relaxation both in endothelium-intact and endothelium-denuded aortic rings precontracted by PE (10−6 M) and KCl (6 × 10−2 M). Extract reduced PE- and KCl-induced contractions in presence of cumulative concentrations of calcium (10−5–10−2 M) significantly. L-NAME and indomethacin had no effect on vasorelaxation effect of extract in PE-induced contraction. Diltiazem and heparin reduced significantly this vasorelaxation at a concentration of 14 mg/mL of extract; however, N. sativa-induced relaxation was not affected by ruthenium red. Tetraethylammonium chloride reduced the extract-induced relaxation in concentrations of 2–6 mg/mL of extract significantly but glibenclamide reduced this relaxative effect in all concentrations of extract. Conclusions. The inhibitory effect of N. sativa seed extract on the contraction induced by PE and KCl was endothelium-independent. This relaxation was mediated mainly through the inhibition of Ca2+ and channels and also intracellular calcium release. Saeed Niazmand, Elahe Fereidouni, Maryam Mahmoudabady, and Seyed Mojtaba Mousavi Copyright © 2014 Saeed Niazmand et al. All rights reserved. Systemic Approach to Identify Serum microRNAs as Potential Biomarkers for Acute Myocardial Infarction Mon, 12 May 2014 07:43:12 +0000 Background. Recent studies have revealed the role of microRNAs (miRNAs) in a variety of biological and pathological processes, including acute myocardial infarction (AMI). We hypothesized that ST-segment elevation myocardial infarction (STEMI) may be associated with an alteration of miRNAs and that circulating miRNAs may be used as diagnostic markers for STEMI. Methods. Expression levels of 270 serum miRNAs were analyzed in 8 STEMI patients and 8 matched healthy controls to identify miRNAs differentially expressed in the sera of patients with AMI. The differentially expressed miRNAs were evaluated in a separate cohort of 62 subjects, including 31 STEMI patients and 31 normal controls. Results. The initial profiling study identified 12 upregulated and 13 downregulated serum miRNAs in the AMI samples. A subsequent validation study confirmed that serum miR-486-3p and miR-150-3p were upregulated while miR-126-3p, miR-26a-5p, and miR-191-5p were significantly downregulated in the sera of patients with AMI. Ratios between the level of upregulated and downregulated miRNAs were also significantly different in those with AMI. Receiver operator characteristics curve analysis using the expression ratio of miR-486-3p and miR-191-5p showed an area under the curve of 0.863. Conclusion. Our results suggest that serum miRNAs may be used as potential diagnostic biomarkers for STEMI. An Hsu, Shu-Jen Chen, Yu-Sun Chang, Hua-Chien Chen, and Pao-Hsien Chu Copyright © 2014 An Hsu et al. All rights reserved. Glucagon Effects on 3H-Histamine Uptake by the Isolated Guinea-Pig Heart during Anaphylaxis Sun, 11 May 2014 09:19:17 +0000 We estimated the influence of acute glucagon applications on 3H-histamine uptake by the isolated guinea-pig heart, during a single 3H-histamine passage through the coronary circulation, before and during anaphylaxis, and the influence of glucagon on level of histamine, NO, , and H2O2 in the venous effluent during anaphylaxis. Before anaphylaxis, glucagon pretreatment does not change 3H-histamine Umax and the level of endogenous histamine. At the same time, in the presence of glucagon, 3H-histamine Unet is increased and backflux is decreased when compared to the corresponding values in the absence of glucagon. During anaphylaxis, in the presence of glucagon, the values of 3H-histamine Umax and Unet are significantly higher and backflux is significantly lower in the presence of glucagon when compared to the corresponding values in the absence of glucagon. The level of endogenous histamine during anaphylaxis in the presence of glucagon (6.9–7.38 × 10−8 μM) is significantly lower than the histamine level in the absence of glucagon (10.35–10.45 × 10−8 μM). Glucagon pretreatment leads to a significant increase in NO release (5.69 nmol/mL) in comparison with the period before glucagon administration (2.49 nmol/mL). Then, in the presence of glucagon, level fails to increase during anaphylaxis. Also, our results show no significant differences in H2O2 levels before, during, and after anaphylaxis in the presence of glucagon, but these values are significantly lower than the corresponding values in the absence of glucagon. In conclusion, our results show that glucagon increases NO release and prevents the increased release of free radicals during anaphylaxis, and decreases histamine level in the venous effluent during cardiac anaphylaxis, which may be a consequence of decreased histamine release and/or intensified histamine capturing by the heart during anaphylaxis. Mirko Rosic, Oberdan Parodi, Vladimir Jakovljevic, Maja Colic, Vladimir Zivkovic, Vuk Jokovic, and Suzana Pantovic Copyright © 2014 Mirko Rosic et al. All rights reserved. The Effect of Prior Upper Body Exercise on Subsequent Wingate Performance Wed, 07 May 2014 12:06:37 +0000 It has been reported previously that the upper body musculature is continually active during high intensity cycle ergometry. The aim of this study was to examine the effects of prior upper body exercise on subsequent Wingate (WAnT) performance. Eleven recreationally active males (20.8 ± 2.2 yrs; 77.7 ± 12.0 kg; 1.79 ± 0.04 m) completed two trials in a randomised order. In one trial participants completed  s WAnT tests (WAnT1 and WAnT2) with a 6 min recovery period; in the other trial, this protocol was preceded with 4 sets of biceps curls to induce localised arm fatigue. Prior upper body exercise was found to have a statistically significant detrimental effect on peak power output (PPO) during WAnT1 but no effect was observed for mean power output (MPO) . Handgrip (HG) strength was also found to be significantly lower following the upper body exercise. These results demonstrate that the upper body is meaningfully involved in the generation of leg power during intense cycling. Marie Clare Grant, Robert Robergs, Marianne Findlay Baird, and Julien S. Baker Copyright © 2014 Marie Clare Grant et al. All rights reserved. Grain Sterility in relation to Dry Mass Production and Distribution in Rice (Oryza sativa L.) Tue, 06 May 2014 08:31:58 +0000 The experiment was conducted to investigate potential causes of grain sterility in widely cultivated rice variety in Malaysia, MR219 and its two mutant lines (RM311 and RM109) by examining the source-sink relations. RM311 produced increased dry matter yield both at heading and maturity and also showed higher grain yield with greater proportion of grain sterility than the other two genotypes (RM109 and MR219) resulting in the lowest harvest index (49.68%). In contrast, harvest index was greater in RM109 (53.34%) and MR219 (52.76%) with less grain sterility percentage than MR311 indicating that dry matter partitioning to economic yield was better in RM109 and MR219 than in MR311. Results indicated that dry matter allocation per spikelet from heading to maturity was important for reducing grain sterility in rice. The greater above-ground crop dry matter per spikelet was observed in RM109 and MR219 as compared to high dry matter producing genotype; RM311 implies that poor grain filling may not have resulted from dry matter production or source limitation. These findings suggest that grain sterility or poor grain filling in rice is the result of poor translocation and partitioning of assimilates into grains (sink) rather than of limited biomass production or source limitation. Adam B. Puteh, M. Monjurul Alam Mondal, Mohd. Razi Ismail, and Mohammad Abdul Latif Copyright © 2014 Adam B. Puteh et al. All rights reserved. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans Wed, 30 Apr 2014 14:02:17 +0000 Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on the plasma ionic composition. Variations in the concentration of plasma ions that alter the relative proportion of anions and cations predictably lead to a change in the plasma concentration of hydrogen ions by driving adaptive adjustments in water ionization that allow plasma electroneutrality while maintaining constant the ionic product for water. The accumulation of plasma anions out of proportion of cations induces an electrical imbalance compensated by a fall of hydroxide ions that brings about a rise in hydrogen ions (acidosis). By contrast, the deficiency of chloride relative to sodium generates plasma alkalosis by increasing hydroxide ions. The adjustment of plasma bicarbonate concentration to these changes is an important compensatory mechanism that protects plasma pH from severe deviations. María M. Adeva-Andany, Natalia Carneiro-Freire, Cristóbal Donapetry-García, Eva Rañal-Muíño, and Yosua López-Pereiro Copyright © 2014 María M. Adeva-Andany et al. All rights reserved. Potential Role of A2B Adenosine Receptors on Proliferation/Migration of Fetal Endothelium Derived from Preeclamptic Pregnancies Mon, 28 Apr 2014 11:23:06 +0000 To investigate the functionality of adenosine receptor (AR) and the nitric oxide (NO) and vascular endothelial growth factor (VEGF) signaling pathway in the endothelial cell proliferation/migration during preeclampsia, we used human umbilical vein endothelial cells (HUVECs) isolated from normal pregnancies or pregnancies with preeclampsia . Experiments were performed in presence or absence of the nonselective adenosine receptor agonist NECA, the AR selective antagonist MRS-1754, and the nitric oxide synthase (NOS) inhibitor L-NAME. Results indicated that cells from preeclampsia exhibited a significant higher protein level of AR and logEC50 for NECA-mediated proliferation than normotensive pregnancies. The stimulatory effect of NECA (10 μM, 24 h) on cell proliferation was prevented by MRS-1754 (5 nM) coincubation only in cells from normotensive pregnancies. Nevertheless, L-NAME (100 μM, 24 h) reduced the NECA-induced cell proliferation/migration in HUVEC from normal pregnancy; however in preeclampsia only NECA-induced cell proliferation was reduced by L-NAME. Moreover, NECA increased protein nitration and abundance of VEGF in cells from normal pregnancy and effect prevented by MRS-1754 coincubation. Nevertheless, in preeclampsia NECA did not affect the protein level of VEGF. In conclusion HUVECs from preeclampsia exhibit elevated protein level of AR and impairment of AR-mediated NO/VEGF signaling pathway. Jesenia Acurio, Felipe Troncoso, Patricio Bertoglia, Carlos Salomon, Claudio Aguayo, Luis Sobrevia, and Carlos Escudero Copyright © 2014 Jesenia Acurio et al. All rights reserved. Haemodynamic Monitoring in the Intensive Care Unit: Results from a Web-Based Swiss Survey Tue, 22 Apr 2014 08:39:46 +0000 Background. The aim of this survey was to describe, in a situation of growing availability of monitoring devices and parameters, the practices in haemodynamic monitoring at the bedside. Methods. We conducted a Web-based survey in Swiss adult ICUs (2009-2010). The questionnaire explored the kind of monitoring used and how the fluid management was addressed. Results. Our survey included 71% of Swiss ICUs. Echocardiography (95%), pulmonary artery catheter (PAC: 85%), and transpulmonary thermodilution (TPTD) (82%) were the most commonly used. TPTD and PAC were frequently both available, although TPTD was the preferred technique. Echocardiography was widely available (95%) but seems to be rarely performed by intensivists themselves. Guidelines for the management of fluid infusion were available in 45% of ICUs. For the prediction of fluid responsiveness, intensivists rely preferentially on dynamic indices or echocardiographic parameters, but static parameters, such as central venous pressure or pulmonary artery occlusion pressure, were still used. Conclusions. In most Swiss ICUs, multiple haemodynamic monitoring devices are available, although TPTD is most commonly used. Despite the usefulness of echocardiography and its large availability, it is not widely performed by Swiss intensivists themselves. Regarding fluid management, several parameters are used without a clear consensus for the optimal method. Nils Siegenthaler, Raphael Giraud, Till Saxer, Delphine S. Courvoisier, Jacques-André Romand, and Karim Bendjelid Copyright © 2014 Nils Siegenthaler et al. All rights reserved. Exploitation of a Very Small Peptide Nucleic Acid as a New Inhibitor of miR-509-3p Involved in the Regulation of Cystic Fibrosis Disease-Gene Expression Tue, 15 Apr 2014 08:45:15 +0000 Computational techniques, and in particular molecular dynamics (MD) simulations, have been successfully used as a complementary technique to predict and analyse the structural behaviour of nucleic acids, including peptide nucleic acid- (PNA-) RNA hybrids. This study shows that a 7-base long PNA complementary to the seed region of miR-509-3p, one of the miRNAs involved in the posttranscriptional regulation of the CFTR disease-gene of Cystic Fibrosis, and bearing suitable functionalization at its N- and C-ends aimed at improving its resistance to nucleases and cellular uptake, is able to revert the expression of the luciferase gene containing the 3′UTR of the gene in A549 human lung cancer cells, in agreement with the MD results that pointed at the formation of a stable RNA/PNA heteroduplex notwithstanding the short sequence of the latter. The here reported results widen the interest towards the use of small PNAs as effective anti-miRNA agents. Felice Amato, Rossella Tomaiuolo, Fabrizia Nici, Nicola Borbone, Ausilia Elce, Bruno Catalanotti, Stefano D'Errico, Carmine Marco Morgillo, Giuseppe De Rosa, Laura Mayol, Gennaro Piccialli, Giorgia Oliviero, and Giuseppe Castaldo Copyright © 2014 Felice Amato et al. All rights reserved. Exercise Training Could Improve Age-Related Changes in Cerebral Blood Flow and Capillary Vascularity through the Upregulation of VEGF and eNOS Sun, 13 Apr 2014 13:06:06 +0000 This study aimed to investigate the effect of exercise training on age-induced microvascular alterations in the brain. Additionally, the association with the protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) was also assessed. Male Wistar rats were divided into four groups: sedentary-young (SE-Young, ), sedentary aged (SE-Aged, ), immersed-aged (IM-Aged, ), and exercise trained-aged (ET-Aged, 60 minutes/day and 5 days/week for 8 weeks, ) rats. The MAPs of all aged groups, SE-Aged, IM-Aged, and ET-Aged, were significantly higher than that of the SE-Young group. The regional cerebral blood flow (rCBF) in the SE-Aged and IM-Aged was significantly decreased as compared to SE-Young groups. However, rCBF of ET-Aged group was significantly higher than that in the IM-Aged group (). Moreover, the percentage of capillary vascularity (%CV) and the levels of VEGF and eNOS in the ET-Aged group were significantly increased compared to the IM-Aged group (). These results imply that exercise training could improve age-induced microvascular changes and hypoperfusion closely associated with the upregulation of VEGF and eNOS. Sheepsumon Viboolvorakul and Suthiluk Patumraj Copyright © 2014 Sheepsumon Viboolvorakul and Suthiluk Patumraj. All rights reserved. Rapid Degradation of Hfq-Free RyhB in Yersinia pestis by PNPase Independent of Putative Ribonucleolytic Complexes Thu, 10 Apr 2014 13:36:53 +0000 The RNA chaperone Hfq in bacteria stabilizes sRNAs by protecting them from the attack of ribonucleases. Upon release from Hfq, sRNAs are preferably degraded by PNPase. PNPase usually forms multienzyme ribonucleolytic complexes with endoribonuclease E and/or RNA helicase RhlB to facilitate the degradation of the structured RNA. However, whether PNPase activity on Hfq-free sRNAs is associated with the assembly of RNase E or RhlB has yet to be determined. Here we examined the roles of the main endoribonucleases, exoribonucleases, and ancillary RNA-modifying enzymes in the degradation of Y. pestis RyhB in the absence of Hfq. Expectedly, the transcript levels of both RyhB1 and RyhB2 increase only after inactivating PNPase, which confirms the importance of PNPase in sRNA degradation. By contrast, the signal of RyhB becomes barely perceptible after inactivating of RNase III, which may be explained by the increase in PNPase levels resulting from the exemption of pnp mRNA from RNase III processing. No significant changes are observed in RyhB stability after deletion of either the PNPase-binding domain of RNase E or rhlB. Therefore, PNPase acts as a major enzyme of RyhB degradation independent of PNPase-containing RNase E and RhlB assembly in the absence of Hfq. Zhongliang Deng, Zizhong Liu, Yujing Bi, Xiaoyi Wang, Dongsheng Zhou, Ruifu Yang, and Yanping Han Copyright © 2014 Zhongliang Deng et al. All rights reserved. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases? Wed, 09 Apr 2014 12:09:17 +0000 Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain. Suk-yu Yau, Joana Gil-Mohapel, Brian R. Christie, and Kwok-fai So Copyright © 2014 Suk-yu Yau et al. All rights reserved. Oleoylethanolamide: A Novel Potential Pharmacological Alternative to Cannabinoid Antagonists for the Control of Appetite Thu, 03 Apr 2014 13:33:27 +0000 The initial pharmaceutical interest for the endocannabinoid system as a target for antiobesity therapies has been restricted by the severe adverse effects of the CB1 antagonist rimonabant. This study points at oleoylethanolamide (OEA), a monounsaturated analogue, and functional antagonist of anandamide, as a potential and safer antiobesity alternative to CB1 antagonism. Mice treated with equal doses (5 or 10 mg/kg, i.p.) of OEA or rimonabant were analyzed for the progressive expression of spontaneous behaviors (eating, grooming, rearing, locomotion, and resting) occurring during the development of satiety, according to the paradigm called behavioral satiety sequence (BSS). Both drugs reduced food (wet mash) intake to a similar extent. OEA treatment decreased eating activity within the first 30 min and caused a temporary increase of resting time that was not accompanied by any decline of horizontal, vertical and total motor activity. Besides decreasing eating activity, rimonabant caused a marked increase of the time spent grooming and decreased horizontal motor activity, alterations that might be indicative of aversive nonmotivational effects on feeding. These results support the idea that OEA suppresses appetite by stimulating satiety and that its profile of action might be predictive of safer effects in humans as a novel antiobesity treatment. Adele Romano, Roberto Coccurello, Giacomo Giacovazzo, Gaurav Bedse, Anna Moles, and Silvana Gaetani Copyright © 2014 Adele Romano et al. All rights reserved. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3 Thu, 03 Apr 2014 06:42:14 +0000 Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. Ching-Feng Cheng, Terry B. J. Kuo, Wei-Nan Chen, Chao-Chieh Lin, and Chih-Cheng Chen Copyright © 2014 Ching-Feng Cheng et al. All rights reserved. Synthesis and Gene Silencing Properties of siRNAs Containing Terminal Amide Linkages Wed, 26 Mar 2014 16:45:19 +0000 The active components of the RNAi are 21 nucleotides long dsRNAs containing a 2 nucleotide overhang at the 3′ end, carrying 5′-phosphate and 3′-hydroxyl groups (siRNAs). Structural analysis revealed that the siRNA is functionally bound at both ends to RISC. Terminal modifications are considered with interest as the introduction of chemical moieties interferes with the 3′ overhang recognition by the PAZ domain and the 5′-phosphate recognition by the MID and PIWI domains of RISC. Herein, we report the synthesis of modified siRNAs containing terminal amide linkages by introducing hydroxyethylglycine PNA (hegPNA) moieties at 5′, and at 3′ positions and on both terminals. Results of gene silencing studies highlight that some of these modifications are compatible with the RNAi machinery and markedly increase the resistance to serum-derived nucleases even after 24 h of incubation. Molecular docking simulations were attained to give at atomistic level a clearer picture of the effect of the most performing modifications on the interactions with the human Argonaute 2 PAZ, MID, and PIWI domains. This study adds another piece to the puzzle of the heterogeneous chemical modifications that can be attained to enhance the silencing efficiency of siRNAs. Maria Gaglione, M. Emilia Mercurio, Nicoletta Potenza, Nicola Mosca, Aniello Russo, Ettore Novellino, Sandro Cosconati, and Anna Messere Copyright © 2014 Maria Gaglione et al. All rights reserved. Adult Neurogenesis and Glial Oncogenesis: When the Process Fails Tue, 11 Mar 2014 16:27:49 +0000 Malignant brain tumors, including glioblastoma multiforme (GBM), are known for their high degree of invasiveness, aggressiveness, and lethality. These tumors are made up of heterogeneous cell populations and only a small part of these cells (known as cancer stem cells) is responsible for the initiation and recurrence of the tumor. The biology of cancer stem cells and their role in brain tumor growth and therapeutic resistance has been extensively investigated. Recent work suggests that glial tumors arise from neural stem cells that undergo a defective process of differentiation. The understanding of this process might permit the development of novel treatment strategies targeting cancer stem cells. In the present review, we address the mechanisms underlying glial tumor formation, paying special attention to cancer stem cells and the role of the microenvironment in preserving them and promoting tumor growth. Recent advancements in cancer stem cell biology, especially regarding tumor initiation and resistance to chemo- or radiotherapy, have led to the development of novel treatment strategies that focus on the niche of the stem cells that make up the tumor. Encouraging results from preclinical studies predict that these findings will be translated into the clinical field in the near future. Chary Marquez Batista, Eric Domingos Mariano, Breno José Alencar Pires Barbosa, Matthias Morgalla, Suely Kazue Nagahashi Marie, Manoel Jacobsen Teixeira, and Guilherme Lepski Copyright © 2014 Chary Marquez Batista et al. All rights reserved. Omega-3 Fatty Acid Enriched Chevon (Goat Meat) Lowers Plasma Cholesterol Levels and Alters Gene Expressions in Rats Tue, 25 Feb 2014 08:04:01 +0000 In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of -linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats ( in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased () in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR- and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR- and SREBP-1c genes expression. Mahdi Ebrahimi, Mohamed Ali Rajion, Goh Yong Meng, and Abdoreza Soleimani Farjam Copyright © 2014 Mahdi Ebrahimi et al. All rights reserved. Swimming Exercise Changes Hemodynamic Responses Evoked by Blockade of Excitatory Amino Receptors in the Rostral Ventrolateral Medulla in Spontaneously Hypertensive Rats Tue, 18 Feb 2014 12:42:20 +0000 Exercise training reduces sympathetic activity in hypertensive humans and rats. We hypothesized that the swimming exercise would change the neurotransmission in the rostral ventrolateral medulla (RVLM), a key region involved in sympathetic outflow, and hemodynamic control in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Bilateral injections of kynurenic acid (KYN) were carried out in the RVLM in sedentary- (S-) or exercised- (E-) SHR and WKY rats submitted to swimming for 6  weeks. Rats were -chloralose anesthetized and artificially ventilated, with Doppler flow probes around the lower abdominal aorta and superior mesenteric artery. Injections into the RVLM were made before and after i.v. L-NAME (nitric oxide synthase, NOS, inhibitor). Injections of KYN into the RVLM elicited a major vasodilation in the hindlimb more than in the mesenteric artery in E-SHR compared to S-SHR, but similar decrease in arterial pressure was observed in both groups. Injections of KYN into the RVLM after i.v. L-NAME attenuated the hindlimb vasodilation evoked by KYN and increased the mesenteric vasodilation in E-SHR. Swimming exercise can enhance the hindlimb vasodilation mediated by peripheral NO release, reducing the activation of neurons with EAA receptors in the RVLM in SHR. Cristiana A. Ogihara, Gerhardus H. M. Schoorlemmer, Maria de Fátima M. Lazari, Gisele Giannocco, Oswaldo U. Lopes, Eduardo Colombari, and Monica A. Sato Copyright © 2014 Cristiana A. Ogihara et al. All rights reserved. Transferrin-Conjugated SNALPs Encapsulating 2′-O-Methylated miR-34a for the Treatment of Multiple Myeloma Thu, 13 Feb 2014 13:14:30 +0000 Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2′-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM. Immacolata Scognamiglio, Maria Teresa Di Martino, Virginia Campani, Antonella Virgilio, Aldo Galeone, Annamaria Gullà, Maria Eugenia Gallo Cantafio, Gabriella Misso, Pierosandro Tagliaferri, Pierfrancesco Tassone, Michele Caraglia, and Giuseppe De Rosa Copyright © 2014 Immacolata Scognamiglio et al. All rights reserved. NF-B Mediated Regulation of Adult Hippocampal Neurogenesis: Relevance to Mood Disorders and Antidepressant Activity Wed, 12 Feb 2014 00:00:00 +0000 Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed. Valeria Bortolotto, Bruna Cuccurazzu, Pier Luigi Canonico, and Mariagrazia Grilli Copyright © 2014 Valeria Bortolotto et al. All rights reserved. Stress Hormone and Reproductive System in Response to Honey Supplementation Combined with Different Jumping Exercise Intensities in Female Rats Sun, 09 Feb 2014 15:50:27 +0000 This study was performed to determine the effects of 8-week honey supplementation combined with different jumping exercise intensities on serum cortisol, progesterone, estradiol, and reproductive organs. Eighty-four 9-week-old female rats were divided into 7 groups: baseline controls (), sedentary group (C), 20 and 80 jumps per day (, ), honey (H), and combined honey with 20 and 80 jumps per day (, ) groups. Jumping exercise was performed at 5 days/week and honey was given at a dosage of 1 g/kg body weight/day for 7 days/week. The level of serum cortisol was higher in and compared to C. There was significantly lower value of serum cortisol in compared to . Serum progesterone levels were significantly lower in and compared to C. However, serum progesterone levels were significantly higher in and compared to and . Relative uterine weights were significantly greater in compared to C and , respectively. There was no significant difference in estradiol level and relative ovarian weights among all the groups. Therefore, honey elicited beneficial effects in reducing the increase of cortisol and in increasing the reduce of progesterone levels induced by different intensities jumping exercise in female rats. Maryam Mosavat, Foong Kiew Ooi, and Mahaneem Mohamed Copyright © 2014 Maryam Mosavat et al. All rights reserved. Facial Vibrotactile Stimulation Activates the Parasympathetic Nervous System: Study of Salivary Secretion, Heart Rate, Pupillary Reflex, and Functional Near-Infrared Spectroscopy Activity Wed, 08 Jan 2014 14:32:27 +0000 We previously found that the greatest salivation response in healthy human subjects is produced by facial vibrotactile stimulation of 89 Hz frequency with 1.9 μm amplitude (89 Hz-S), as reported by Hiraba et al. (2012, 20011, and 2008). We assessed relationships between the blood flow to brain via functional near-infrared spectroscopy (fNIRS) in the frontal cortex and autonomic parameters. We used the heart rate (HRV: heart rate variability analysis in RR intervals), pupil reflex, and salivation as parameters, but the interrelation between each parameter and fNIRS measures remains unknown. We were to investigate the relationship in response to established paradigms using simultaneously each parameter-fNIRS recording in healthy human subjects. Analysis of fNIRS was examined by a comparison of various values between before and after various stimuli (89 Hz-S, 114 Hz-S, listen to classic music, and “Ahh” vocalization). We confirmed that vibrotactile stimulation (89 Hz) of the parotid glands led to the greatest salivation, greatest increase in heart rate variability, and the most constricted pupils. Furthermore, there were almost no detectable differences between fNIRS during 89 Hz-S and fNIRS during listening to classical music of fans. Thus, vibrotactile stimulation of 89 Hz seems to evoke parasympathetic activity. Hisao Hiraba, Motoharu Inoue, Kanako Gora, Takako Sato, Satoshi Nishimura, Masaru Yamaoka, Ayano Kumakura, Shinya Ono, Hirotugu Wakasa, Enri Nakayama, Kimiko Abe, and Koichiro Ueda Copyright © 2014 Hisao Hiraba et al. All rights reserved. A Novel Bone Morphogenetic Protein 2 Mutant Mouse, , Displays Impaired Intracellular Handling in Skeletal Muscle Thu, 28 Nov 2013 11:38:32 +0000 We recently reported a novel form of BMP2, designated nBMP2, which is translated from an alternative downstream start codon and is localized to the nucleus rather than secreted from the cell. To examine the function of nBMP2 in the nucleus, we engineered a gene-targeted mutant mouse model () in which nBMP2 cannot be translocated to the nucleus. Immunohistochemistry demonstrated the presence of nBMP2 staining in the myonuclei of wild type but not mutant skeletal muscle. The mouse exhibits altered function of skeletal muscle as demonstrated by a significant increase in the time required for relaxation following a stimulated twitch contraction. Force frequency analysis showed elevated force production in mutant muscles compared to controls from 10 to 60 Hz stimulation frequency, consistent with the mutant muscle’s reduced ability to relax between rapidly stimulated contractions. Muscle relaxation after contraction is mediated by the active transport of Ca2+ from the cytoplasm to the sarcoplasmic reticulum by sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), and enzyme activity assays revealed that SERCA activity in skeletal muscle from mice was reduced to approximately 80% of wild type. These results suggest that nBMP2 plays a role in the establishment or maintenance of intracellular Ca2+ transport pathways in skeletal muscle. Laura C. Bridgewater, Jaime L. Mayo, Bradley G. Evanson, Megan E. Whitt, Spencer A. Dean, Joshua D. Yates, Devin N. Holden, Alina D. Schmidt, Christopher L. Fox, Saroj Dhunghel, Kevin S. Steed, Michael M. Adam, Caitlin A. Nichols, Sampath K. Loganathan, Jeffery R. Barrow, and Chad R. Hancock Copyright © 2013 Laura C. Bridgewater et al. All rights reserved. The Effect of Bedding System Selected by Manual Muscle Testing on Sleep-Related Cardiovascular Functions Mon, 25 Nov 2013 15:32:52 +0000 Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant’s home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. Terry B. J. Kuo, Jia-Yi Li, Chun-Ting Lai, Yu-Chun Huang, Ya-Chuan Hsu, and Cheryl C. H. Yang Copyright © 2013 Terry B. J. Kuo et al. All rights reserved. Regulation of PKC Autophosphorylation by Calponin in Contractile Vascular Smooth Muscle Tissue Tue, 19 Nov 2013 12:51:06 +0000 Protein kinase C (PKC) is a key enzyme involved in agonist-induced smooth muscle contraction. In some cases, regulatory phosphorylation of PKC is required for full activation of the enzyme. However, this issue has largely been ignored with respect to PKC-dependent regulation of contractile vascular smooth muscle (VSM) contractility. The first event in PKC regulation is a transphosphorylation by PDK at a conserved threonine in the activation loop of PKC, followed by the subsequent autophosphorylation at the turn motif and hydrophobic motif sites. In the present study, we determined whether phosphorylation of PKC is a regulated process in VSM and also investigated a potential role of calponin in the regulation of PKC. We found that calponin increases the level of in vitro PKC phosphorylation at the PDK and hydrophobic sites, but not the turn motif site. In vascular tissues, phosphorylation of the PKC hydrophobic site, but not turn motif site, as well as phosphorylation of PDK at S241 increased in response to phenylephrine. Calponin knockdown inhibits autophosphorylation of cellular PKC in response to phenylephrine, confirming results with recombinant PKC. Thus these results show that autophosphorylation of PKC is regulated in dVSM and calponin is necessary for autophosphorylation of PKC in VSM. Hak Rim Kim, Cynthia Gallant, and Kathleen G. Morgan Copyright © 2013 Hak Rim Kim et al. All rights reserved. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism Tue, 05 Nov 2013 11:54:33 +0000 Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC) in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG), 5.6 mM (MG), or 23.3 mM(HG) under normoxic or hypoxic (1% oxygen) condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production. Wei Li, Zhen-Fu Hu, Bin Chen, and Guo-Xin Ni Copyright © 2013 Wei Li et al. All rights reserved. Evaluating the Importance of the Carotid Chemoreceptors in Controlling Breathing during Exercise in Man Wed, 23 Oct 2013 11:46:20 +0000 Only the carotid chemoreceptors stimulate breathing during hypoxia in Man. They are also ideally located to warn if the brain’s oxygen supply falls, or if hypercapnia occurs. Since their discovery ~80 years ago stimulation, ablation, and recording experiments still leave 3 substantial difficulties in establishing how important the carotid chemoreceptors are in controlling breathing during exercise in Man: (i) they are in the wrong location to measure metabolic rate (but are ideally located to measure any mismatch), (ii) they receive no known signal during exercise linking them with metabolic rate and no overt mismatch signals occur and (iii) their denervation in Man fails to prevent breathing matching metabolic rate in exercise. New research is needed to enable recording from carotid chemoreceptors in Man to establish whether there is any factor that rises with metabolic rate and greatly increases carotid chemoreceptor activity during exercise. Available evidence so far in Man indicates that carotid chemoreceptors are either one of two mechanisms that explain breathing matching metabolic rate or have no importance. We still lack key experimental evidence to distinguish between these two possibilities. M. J. Parkes Copyright © 2013 M. J. Parkes. All rights reserved. Leptin Increases Blood Pressure and Markers of Endothelial Activation during Pregnancy in Rats Thu, 19 Sep 2013 14:46:27 +0000 Raised leptin levels have been reported in the placentae and serum of women with elevated blood pressure and proteinuria during pregnancy. The role of leptin in this however remains unknown. This study investigates the effect of leptin administration on systolic blood pressure (SBP) and proteinuria and serum markers of endothelial activation during pregnancy in Sprague Dawley rats. From day 1 of pregnancy, 24 rats were randomised into those given either saline (group 1) or leptin at 60 or 120 μg/kg/body weight/day (groups 2 and 3 resp.). SBP was measured every 5 days and 24-h urinary protein was measured at days 0 and 20 of pregnancy. Animals were euthanised on day 20 of pregnancy, and serum was collected for estimation of E-selectin and ICAM-1. Compared to group 1, SBP during the latter part of the pregnancy was significantly higher in the leptin-treated group (). Urinary protein excretion, serum E-selectin, and ICAM-1 were significantly higher in leptin-treated rats (). It seems that leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases SBP, urinary protein excretion, and markers of endothelial activation. However, further studies are required to examine the underlying mechanism responsible for this and its relevance to preeclampsia in humans. Hisham Saleh Ibrahim, Effat Omar, Gabrielle Ruth Anisah Froemming, and Harbindar Jeet Singh Copyright © 2013 Hisham Saleh Ibrahim et al. All rights reserved. Effects of Estrogen Fluctuation during the Menstrual Cycle on the Response to Stretch-Shortening Exercise in Females Thu, 12 Sep 2013 14:10:37 +0000 The aim of this study was to investigate whether variation in estrogen levels during the menstrual cycle influences susceptibility to exercise-induced muscle damage after stretch-shortening cycle exercise. Physically active women (; age = 20.2 ± 1.7 yr) participated in this research. The subjects performed one session of 100 maximal drop jumps on day 1 or 2 of the follicular phase and another identical session on day 1 or 2 of the ovulatory phase; the order of the sessions was randomized. Quadriceps femoris muscle peak torque evoked by electrical stimulation and maximal voluntary contraction, muscle pain, and CK activity were measured before and at various times up to 72 h after exercise. It was found that the high estrogen level during the ovulatory phase might be related to an earlier return to baseline muscle strength after strenuous stretch-shortening cycle exercise in that phase compared with the follicular phase. The estrogen effect appears to be highly specific to the damaged site because the differences in most EIMD markers (CK, soreness, and low-frequency fatigue) between the two menstrual cycle phases were small. Saulė Sipavičienė, Laura Daniusevičiutė, Irina Klizienė, Sigitas Kamandulis, and Albertas Skurvydas Copyright © 2013 Saulė Sipavičienė et al. All rights reserved. Peak Oxygen Uptake Responses to Training in Obese Adolescents: A Multilevel Allometric Framework to Partition the Influence of Body Size and Maturity Status Mon, 15 Jul 2013 14:46:43 +0000 The influence of body size and maturation on the responses in peak oxygen uptake (VO2) to a 12-week aerobic training and nutritional intervention in obese boys (; 10–16 years) was examined using multilevel allometric regressions. Anthropometry, sexual maturity status, peak VO2, and body composition were measured pre- and postintervention. Significant decrements for body mass, body mass index z-score, and waist circumference and increments for stature, fat-free mass, and peak oxygen uptake were observed after intervention. Partitioning body size on peak VO2, the responses of the individuals to training were positive (11.8% to 12.7% for body mass; 7.6% to 8.1% for fat-free mass). Body mass and fat-free mass were found as significant explanatory variables, with an additional positive effect for chronological. The allometric coefficients () in the initial models were and for body mass and fat-free mass, respectively. The coefficients decreased when age was considered ( for body mass; for fat-free mass). Including maturity indicator in the models was not significant, thus the influence of variability in sexual maturity status in responses to exercise-based intervention in peak VO2 may be mediated by the changes in body dimensions. Humberto M. Carvalho, Gerusa E. Milano, Wendell A. Lopes, António J. Figueiredo, Rosana B. Radominski, and Neiva Leite Copyright © 2013 Humberto M. Carvalho et al. All rights reserved. Noninvasive Monitoring of Training Induced Muscle Adaptation with -MRS: Fibre Type Shifts Correlate with Metabolic Changes Mon, 15 Jul 2013 13:59:46 +0000 Purpose. To evaluate training induced metabolic changes noninvasively with magnetic resonance spectroscopy (-MRS) for measuring muscle fibre type adaptation. Methods. Eleven volunteers underwent a 24-week training, consisting of speed-strength, endurance, and detraining (each 8 weeks). Prior to and following each training period, needle biopsies and -MRS of the resting gastrocnemius muscle were performed. Fibre type distribution was analyzed histologically and tested for correlation with the ratios of high energy phosphates ([PCr]/[], [PCr]/[βATP] and [PCr + ]/[βATP]). The correlation between the changes of the -MRS parameters during training and the resulting changes in fibre composition were also analysed. Results. We observed an increased type-II-fibre proportion after speed-strength and detraining. After endurance training the percentage of fast-twitch fibres was reduced. The progression of the [PCr]/[]-ratio was similar to that of the fast-twitch fibres during the training. We found a correlation between the type-II-fibre proportion and [PCr]/[] (, ) or [PCr]/[βATP] (, ); the correlations between its changes (delta) and the fibre-shift were significant as well (delta[PCr]/[] , delta[PCr]/[βATP] , ). Conclusion. Shifts in fibre type composition and high energy phosphate metabolite content covary in human gastrocnemius muscle. Therefore -MRS might be a feasible method for noninvasive monitoring of exercise-induced fibre type transformation. Eike Hoff, Lars Brechtel, Patrick Strube, Paul Konstanczak, Gisela Stoltenburg-Didinger, Carsten Perka, and Michael Putzier Copyright © 2013 Eike Hoff et al. All rights reserved. The Role of Insula-Associated Brain Network in Touch Wed, 10 Jul 2013 13:36:58 +0000 The insula is believed to be associated with touch-evoked effects. In this work, functional MRI was applied to investigate the network model of insula function when 20 normal subjects received tactile stimulation over segregated areas. Data analysis was performed with SPM8 and Conn toolbox. Activations in the contralateral posterior insula were consistently revealed for all stimulation areas, with the overlap located in area Ig2. The area Ig2 was then used as the seed to estimate the insula-associated network. The right insula, left superior parietal lobule, left superior temporal gyrus, and left inferior parietal cortex showed significant functional connectivity with the seed region for all stimulation conditions. Connectivity maps of most stimulation conditions were mainly distributed in the bilateral insula, inferior parietal cortex, and secondary somatosensory cortex. Post hoc ROI-to-ROI analysis and graph theoretical analysis showed that there were higher correlations between the left insula and the right insula, left inferior parietal cortex and right OP1 for all networks and that the global efficiency was more sensitive than the local efficiency to detect differences between notes in a network. These results suggest that the posterior insula serves as a hub to functionally connect other regions in the detected network and may integrate information from these regions. Pengxu Wei and Ruixue Bao Copyright © 2013 Pengxu Wei and Ruixue Bao. All rights reserved. Effect of Intermittent Low-Frequency Electrical Stimulation on the Rat Gastrocnemius Muscle Tue, 09 Jul 2013 11:32:32 +0000 Low-frequency neuromuscular electrical stimulation (NMES) has been used as an endurance exercise model. This study aimed to test whether low-frequency NMES increases the phosphorylation of anabolic signaling molecules and induces skeletal muscle hypertrophy, as seen with high-frequency NMES. Using Sprague-Dawley rats, 1 bout of exercise (with dissection done immediately (Post0) and 3 h (Post3) after exercise) and another 6 sessions of training were performed. All experimental groups consisted of high- and low-frequency stimulation (HFS: 100 Hz; LFS: 10 Hz). Periodic acid-Schiff (PAS) staining was conducted to investigate type II fiber activation, and western blot analysis (WB) was conducted to examine whether NMES leads to anabolic intracellular signaling. At first, we examined the acute effect of exercise. PAS staining revealed that glycogen depletion occurred in both type I and type II fibers. WB results demonstrated that p70S6K phosphorylation was significantly increased by HFS, but there was no significant difference with LFS. In contrast, ERK 1/2 phosphorylation was increased by LFS at Post0. In the 6-session training, the wet weight and myofibrillar protein were significantly increased by both HFS and LFS. In conclusion, LFS has a similar anabolic effect for skeletal muscle hypertrophy as HFS, but the mediating signaling pathway might differ. Arata Tsutaki, Riki Ogasawara, Koji Kobayashi, Kihyuk Lee, Karina Kouzaki, and Koichi Nakazato Copyright © 2013 Arata Tsutaki et al. All rights reserved. Vasculoprotective Effects of Combined Endothelial Progenitor Cells and Mesenchymal Stem Cells in Diabetic Wound Care: Their Potential Role in Decreasing Wound-Oxidative Stress Mon, 17 Jun 2013 10:59:09 +0000 To investigate whether the combined endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) could enhance angiogenesis and wound healing in diabetic mice. Balb/c nude mice were divided into five groups, including a control group, diabetic group (DM), DM injected with 1 × 106  cells MSCs, DM injected with 1 × 106  cells EPCs, and DM injected with combined 0.5 × 106  cells MSCs and 0.5 × 106  cells EPCs. After seven weeks, the mice were anesthetized, and bilateral full-thickness excision skin wounds were made on the dorsorostral back. The percentage of wound closure in DM group decreased significantly than in control and all other treated groups on day 7 and day 14 (). On day 14, the percentage of capillary vascularity in combine-treated group was significantly higher than in DM (). In the present study, we have demonstrated that the combined EPCs and MSCs can increase vascular endothelial growth factor (VEGF) level and angiogenesis which resulted in reduced neutrophil infiltration, decreased malondialdehyde (MDA) levels, and enhanced wound healing in diabetic mice model. Supakanda Sukpat, Nipan Isarasena, Jutamas Wongphoom, and Suthiluk Patumraj Copyright © 2013 Supakanda Sukpat et al. All rights reserved. Differences in Plasma Cytokine Levels between Elite Kayakers and Nonathletes Mon, 27 May 2013 10:18:25 +0000 Regular moderate exercise has been shown to have anti-inflammatory effects that help prevent several chronic diseases. However, the effects of chronic training an elite athletes have not been the focus of much research. This study aimed to determine whether there were differences in cytokine levels (IL-1β, IL-1ra, IL-6, IL-10, IL-18, IFN-γ, and TNF-α) in circulating peripheral blood (PB) between elite kayakers and nonathletes. Subjects were 13 elite male kayakers, aged years, with average body mass of  kg and  cm height and with a of  mL·kg−1·min−1. The nonathletes were 7 men, aged years, body mass of  kg, and  cm height. Blood samples were collected after six weeks of offtraining and before the start of a new training season. PB leukocyte populations were determined by flow cytometry. Cytokine levels were quantified by ELISA. When nonathletes were compared with the kayakers, the latter exhibited lower plasma concentrations of IL-1β, IL-18, and IFN-γ as well as a lower concentration of IL-1ra. Positive correlations between IL-18 and B cells in the athletes were also found. These results seem to reinforce the anti-inflammatory role of regular training. G. F. Borges, L. Rama, S. Pedreiro, F. Alves, A. Santos, A. Massart, A. Paiva, and A. M. Teixeira Copyright © 2013 G. F. Borges et al. All rights reserved. Attenuated Increase in Maximal Force of Rat Medial Gastrocnemius Muscle after Concurrent Peak Power and Endurance Training Sun, 27 Jan 2013 14:17:52 +0000 Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task specifically, we hypothesised that the adaptive responses to peak power training were unaffected by additional endurance training. Thirty rats were subjected to either no training (control), peak power training (PT), or both peak power and endurance training (PET), which was performed on a treadmill 5 days per week for 6 weeks. Maximal running velocity increased 13.5% throughout the training and was similar in both training groups. Only after PT, GM maximal force was 10% higher than that of the control group. In the low oxidative compartment, mRNA levels of myostatin and MuRF-1 were higher after PT as compared to those of control and PET groups, respectively. Phospho-S6 ribosomal protein levels remained unchanged, suggesting that the elevated myostatin levels after PT did not inhibit mTOR signalling. In conclusion, even by using task-specific recruitment of the compartmentalized rat GM, additional endurance training interfered with the adaptive response of peak power training and attenuated the increase in maximal force after power training. Regula Furrer, Richard T. Jaspers, Hein L. Baggerman, Nathalie Bravenboer, Paul Lips, and Arnold de Haan Copyright © 2013 Regula Furrer et al. All rights reserved. Is the Second Sodium Pump Electrogenic? Wed, 26 Dec 2012 14:44:44 +0000 Transepithelial sodium transport is a process that involves active Na+ transport at the basolateral membrane of the epithelial cell. This process is mediated by the Na+/K+ pump, which exchanges 3 internal Na+ by 2 external K+ inducing a net charge movement and the second Na+ pump, which transports Na+ accompanied by Cl− and water. It has been suggested that this pump could also be electrogenic. Herein, we evaluated, in MDCK cells, the short-circuit current () generated by these Na+ pumps at the basolateral membrane of the epithelial cells, using amphotericin B as an apical permeabilizing agent. In Cl−-containing media, induced by amphotericin B is totally inhibited by ouabain, indicating that only the electrogenic Na+/K+ pump is detectable in the presence of Cl−. Electrogenicity of the second Na+ pump can be demonstrated in Cl−-free media. The existence of a furosemide-sensitive component of , in addition to an ouabain-sensitive one, was identified in absence of chloride. Passive Cl− movement associated with the function of the second Na+ pump seems to be regulated by the pump itself. These results demonstrate that the second Na+ pump is an electroneutral mechanism result from the stoichiometric movement of Na+ and Cl− across the basolateral plasma membrane of the epithelial cell. L. E. Thomas, M. A. Rocafull, and J. R. del Castillo Copyright © 2013 L. E. Thomas et al. All rights reserved. In Silico Studies of C3 Metabolic Pathway Proteins of Wheat (Triticum aestivum) Wed, 26 Dec 2012 13:11:24 +0000 Photosynthesis is essential for plant productivity and critical for plant growth. More than 90% of plants have a C3 metabolic pathway primarily for carbon assimilation. Improving crop yields for food and fuel is a major challenge for plant biology. To enhance the production of wheat there is need to adopt the strategies that can create the change in plants at the molecular level. During the study we have employed computational bioinformatics and interactomics analysis of C3 metabolic pathway proteins in wheat. The three-dimensional protein modeling provided insight into molecular mechanism and enhanced understanding of physiological processes and biological systems. Therefore in our study, initially we constructed models for nine proteins involving C3 metabolic pathway, as these are not determined through wet lab experiment (NMR, X-ray Crystallography) and not available in RCSB Protein Data Bank and UniProt KB. On the basis of docking interaction analysis, we proposed the schematic diagram of C3 metabolic pathway. Accordingly, there also exist vice versa interactions between 3PGK and Rbcl. Future site and directed mutagenesis experiments in C3 plants could be designed on the basis of our findings to confirm the predicted protein interactions. Muhammad Kashif Naeem, Sobiah Rauf, Hina Iqbal, Muhammad Kausar Nawaz Shah, and Asif Mir Copyright © 2013 Muhammad Kashif Naeem et al. All rights reserved. Waterlogging Tolerance of Crops: Breeding, Mechanism of Tolerance, Molecular Approaches, and Future Prospects Mon, 24 Dec 2012 15:29:01 +0000 Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed. F. Ahmed, M. Y. Rafii, M. R. Ismail, A. S. Juraimi, H. A. Rahim, R. Asfaliza, and M. A. Latif Copyright © 2013 F. Ahmed et al. All rights reserved. Effect of Nanoparticles and Environmental Particles on a Cocultures Model of the Air-Blood Barrier Sun, 23 Dec 2012 11:02:49 +0000 Exposure to engineered nanoparticles (NPs) and to ambient particles (PM) has increased significantly. During the last decades the application of nano-objects to daily-life goods and the emissions produced in highly urbanized cities have considerably augmented. As a consequence, the understanding of the possible effects of NPs and PM on human respiratory system and particularly on the air-blood barrier (ABB) has become of primary interest. The crosstalk between lung epithelial cells and underlying endothelial cells is indeed essential in determining the effects of inhaled particles. Here we report the effects of metal oxides NPs (CuO and TiO2) and of PM on an in vitro model of the ABB constituted by the type II epithelial cell line (NCI-H441) and the endothelial one (HPMEC-ST1.6R). The results demonstrate that apical exposure of alveolar cells induces significant modulation of proinflammatory proteins also in endothelial cells. Rossella Bengalli, Paride Mantecca, Marina Camatini, and Maurizio Gualtieri Copyright © 2013 Rossella Bengalli et al. All rights reserved. Exercise Training and Work Task Induced Metabolic and Stress-Related mRNA and Protein Responses in Myalgic Muscles Wed, 05 Dec 2012 07:37:00 +0000 The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 healthy controls. Those with myalgia performed ~7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In contrast, prolonged general fitness as well as specific strength training decreased mRNA content of heat shock protein while the capacity of carbohydrate oxidation was increased only after specific strength training. Gisela Sjøgaard, Mette K. Zebis, Kristian Kiilerich, Bengt Saltin, and Henriette Pilegaard Copyright © 2013 Gisela Sjøgaard et al. All rights reserved. Relationship between Occlusal Force Distribution and the Activity of Masseter and Anterior Temporalis Muscles in Asymptomatic Young Adults Wed, 05 Dec 2012 07:35:02 +0000 Healthy subjects have a prevalent side on which they display higher-muscle activity during clenching. The relationship between symmetry of masseter muscle (MM) and anterior temporalis (TA) muscle activities and occlusion has been evaluated on the basis of physiological parameters. The aim of the present study was to investigate whether the symmetry of surface EMG (sEMG) activity in asymptomatic young adults is related to symmetry of occlusal contacts. Material. The study population consisted of seventy-two 18-year-old subjects with no temporomandibular disorder (TMD) symptoms. Method. All the participants underwent an sEMG recording with an 8-channel electromyograph (BioEMG III). A T-Scan III evolution 7.01 device was used to analyze the occlusal contact points. Results. The correlation between the activity of right (R) and left (L) TA and the percentage of occlusal contacts was assessed, but no significant differences were found between the RMM and LMM muscles. The differences in the medium values of sEMG between males and females were not statistically significant. Equilibrated muscular activity between RTA and LTA occurred when occlusal contacts reached the percentage of 65% on the left side. Conclusion. The symmetry of sEMG activity in asymptomatic young adults is not related to symmetry of occlusal contacts. Aneta Wieczorek, Jolanta Loster, and Bartlomiej W. Loster Copyright © 2013 Aneta Wieczorek et al. All rights reserved. Structure and Functional Characteristics of Rat’s Left Ventricle Cardiomyocytes under Antiorthostatic Suspension of Various Duration and Subsequent Reloading Tue, 02 Oct 2012 13:36:40 +0000 The goal of the research was to identify the structural and functional characteristics of the rat's left ventricle under antiorthostatic suspension within 1, 3, 7 and 14 days, and subsequent 3 and 7-day reloading after a 14-day suspension. The transversal stiffness of the cardiomyocyte has been determined by the atomic force microscopy, cell respiration—by polarography and proteins content—by Western blotting. Stiffness of the cortical cytoskeleton increases as soon as one day after the suspension and increases up to the 14th day, and starts decreasing during reloading, reaching the control level after 7 days. The stiffness of the contractile apparatus and the intensity of cell respiration also increases. The content of non-muscle isoforms of actin in the cytoplasmic fraction of proteins does not change during the whole experiment, as does not the beta-actin content in the membrane fraction. The content of gamma-actin in the membrane fraction correlates with the change in the transversal stiffness of the cortical cytoskeleton. Increased content of alpha-actinin-1 and alpha-actinin-4 in the membrane fraction of proteins during the suspension is consistent with increased gamma-actin content there. The opposite direction of change of alpha-actinin-1 and alpha-actinin-4 content suggests their involvement into the signal pathways. I. V. Ogneva, T. M. Mirzoev, N. S. Biryukov, O. M. Veselova, and I. M. Larina Copyright © 2012 I. V. Ogneva et al. All rights reserved. Advances in Muscle Physiology and Pathophysiology 2011 Mon, 09 Apr 2012 11:58:42 +0000 Aikaterini Kontrogianni-Konstantopoulos, Guy Benian, and Henk Granzier Copyright © 2012 Aikaterini Kontrogianni-Konstantopoulos et al. All rights reserved. An Experimental Model for Resistance Exercise in Rodents Thu, 16 Feb 2012 10:43:43 +0000 This study aimed to develop an equipment and system of resistance exercise (RE), based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction). Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions), and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and “disturbing” stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans. Humberto Nicastro, Nelo Eidy Zanchi, Claudia Ribeiro da Luz, Daniela Fojo Seixas Chaves, and Antonio Herbert Lancha Jr. Copyright © 2012 Humberto Nicastro et al. All rights reserved. Distinct Effects of Contraction-Induced Injury In Vivo on Four Different Murine Models of Dysferlinopathy Mon, 06 Feb 2012 13:06:15 +0000 Mutations in the DYSF gene, encoding dysferlin, cause muscular dystrophies in man. We compared 4 dysferlinopathic mouse strains: SJL/J and B10.SJL-Dysfim/AwaJ (B10.SJL), and A/J and B6.A-Dysfprmd/GeneJ (B6.A/J). The former but not the latter two are overtly myopathic and weaker at 3 months of age. Following repetitive large-strain injury (LSI) caused by lengthening contractions, all except B6.A/J showed ~40% loss in contractile torque. Three days later, torque in SJL/J, B10.SJL and controls, but not A/J, recovered nearly completely. B6.A/J showed ~30% torque loss post-LSI and more variable recovery. Pre-injury, all dysferlinopathic strains had more centrally nucleated fibers (CNFs) and all but A/J showed more inflammation than controls. At D3, all dysferlinopathic strains showed increased necrosis and inflammation, but not more CNFs; controls were unchanged. Dystrophin-null DMDmdx mice showed more necrosis and inflammation than all dysferlin-nulls. Torque loss and inflammation on D3 across all strains were linearly related to necrosis. Our results suggest that (1) dysferlin is not required for functional recovery 3 days after LSI; (2) B6.A/J mice recover from LSI erratically; (3) SJL/J and B10.SJL muscles recover rapidly, perhaps due to ongoing myopathy; (4) although they recover function to different levels, all 4 dysferlinopathic strains show increased inflammation and necrosis 3 days after LSI. Joseph A. Roche, Lisa W. Ru, and Robert J. Bloch Copyright © 2012 Joseph A. Roche et al. All rights reserved. Localization and Regulation of the N Terminal Splice Variant of PGC-1α in Adult Skeletal Muscle Fibers Sun, 29 Jan 2012 15:52:36 +0000 The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) regulates expression of genes for metabolism and muscle fiber type. Recently, a novel splice variant of PGC-1α (NT-PGC-1α, amino acids 1–270) was cloned and found to be expressed in muscle. Here we use Flag-tagged NT-PGC-1α to examine the subcellular localization and regulation of NT-PGC-1α in skeletal muscle fibers. Flag-NT-PGC-1α is located predominantly in the myoplasm. Nuclear NT-PGC-1α can be increased by activation of protein kinase A. Activation of p38 MAPK by muscle activity or of AMPK had no effect on the subcellular distribution of NT-PGC-1α. Inhibition of CRM1-mediated export only caused relatively slow nuclear accumulation of NT-PGC-1α, indicating that nuclear export of NT-PGC-1α may be mediated by both CRM1-dependent and -independent pathways. Together these results suggest that the regulation of NT-PGC-1α in muscle fibers may be very different from that of the full-length PGC-1α, which is exclusively nuclear. Tiansheng Shen, Yewei Liu, and Martin F. Schneider Copyright © 2012 Tiansheng Shen et al. All rights reserved. Expression and Localization of Ryanodine Receptors in the Frog Semicircular Canal Thu, 19 Jan 2012 14:36:56 +0000 Several experiments suggest an important role for store-released Ca2+ in hair cell organs: drugs targeting IP3 and ryanodine (RyRs) receptors affect release from hair cells, and stores are thought to be involved in vesicle recycling at ribbon synapses. In this work we investigated the semicircular canal distribution of RyRs by immunofluorescence, using slice preparations of the sensory epithelium (to distinguish cell types) and flat mounts of the simpler nonsensory regions. RyRs were present in hair cells, mostly in supranuclear spots, but not in supporting cells; as regards nonsensory regions, they were also localized in dark cells and cells from the ductus. No labeling was found in nerve terminals, although nerve branches could be observed in proximity to hair cell RyR spots. The differential expression of RyR isoforms was studied by RT-PCR and immunoblotting, showing the presence of RyRα in both ampulla and canal arm and RyRβ in the ampulla only. Paola Perin, Laura Botta, Simona Tritto, and Umberto Laforenza Copyright © 2012 Paola Perin et al. All rights reserved. Force Characteristics of the Rat Sternomastoid Muscle Reinnervated with End-to-End Nerve Repair Tue, 13 Dec 2011 17:27:07 +0000 The goal of this study was to establish force data for the rat sternomastoid (SM) muscle after reinnervation with nerve end-to-end anastomosis (EEA), which could be used as a baseline for evaluating the efficacy of new reinnervation techniques. The SM muscle on one side was paralyzed by transecting its nerve and then EEA was performed at different time points: immediate EEA, 1-month and 3-month delay EEA. At the end of 3-month recovery period, the magnitude of functional recovery of the reinnervated SM muscle was evaluated by measuring muscle force and comparing with the force of the contralateral control muscle. Our results demonstrated that the immediately reinnervated SM produced approximately 60% of the maximal tetanic force of the control. The SM with delayed nerve repair yielded approximately 40% of the maximal force. Suboptimal recovery of muscle force after EEA demonstrates the importance of developing alternative surgical techniques to treat muscle paralysis. Stanislaw Sobotka and Liancai Mu Copyright © 2011 Stanislaw Sobotka and Liancai Mu. All rights reserved.