Table of Contents Author Guidelines Submit a Manuscript
Behavioural Neurology
Volume 2016 (2016), Article ID 7919534, 8 pages
http://dx.doi.org/10.1155/2016/7919534
Research Article

Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula

1Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
2Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, China

Received 23 March 2016; Accepted 22 May 2016

Academic Editor: Barbara Picconi

Copyright © 2016 Beilin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. E. Hardin, J. C. Hall, and M. Rosbash, “Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels,” Nature, vol. 343, no. 6258, pp. 536–540, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature, vol. 418, no. 6901, pp. 935–941, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. K. Bunger, L. D. Wilsbacher, S. M. Moran et al., “Mop3 is an essential component of the master circadian pacemaker in mammals,” Cell, vol. 103, no. 7, pp. 1009–1017, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Zheng, D. W. Larkin, U. Albrecht et al., “The mPer2 gene encodes a functional component of the mammalian circadian clock,” Nature, vol. 400, no. 6740, pp. 169–173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Zheng, U. Albrecht, K. Kaasik et al., “Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock,” Cell, vol. 105, no. 5, pp. 683–694, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. L. P. Shearman, X. Jin, C. Lee, S. M. Reppert, and D. R. Weaver, “Targeted disruption of the mPer3 gene: subtle effects on circadian clock function,” Molecular and Cellular Biology, vol. 20, no. 17, pp. 6269–6275, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Vitaterna, C. P. Selby, T. Todo et al., “Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 21, pp. 12114–12119, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. Debruyne, E. Noton, C. M. Lambert, E. S. Maywood, D. R. Weaver, and S. M. Reppert, “A clock shock: mouse CLOCK is not required for circadian oscillator function,” Neuron, vol. 50, no. 3, pp. 465–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Borbely, “A two process model of sleep regulation,” Human Neurobiology, vol. 1, no. 3, pp. 195–204, 1982. View at Google Scholar · View at Scopus
  10. S. Daan, D. G. Beersma, and A. A. Borbély, “Timing of human sleep: recovery process gated by a circadian pacemaker,” American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, vol. 246, no. 2, pp. R161–R183, 1984. View at Google Scholar · View at Scopus
  11. E. Naylor, B. M. Bergmann, K. Krauski et al., “The circadian Clock mutation alters sleep homeostasis in the mouse,” Journal of Neuroscience, vol. 20, no. 21, pp. 8138–8143, 2000. View at Google Scholar · View at Scopus
  12. C. A. Dudley, C. Erbel-Sieler, S. J. Estill et al., “Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice,” Science, vol. 301, no. 5631, pp. 379–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Franken, C. A. Dudley, S. J. Estill et al., “NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7118–7123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Wisor, R. K. Pasumarthi, D. Gerashchenko et al., “Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains,” Journal of Neuroscience, vol. 28, no. 31, pp. 7193–7201, 2008. View at Google Scholar · View at Scopus
  15. P. J. Shiromani, M. Xu, E. M. Winston, S. N. Shiromani, D. Gerashchenko, and D. R. Weaver, “Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 287, no. 1, pp. R47–R57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Kopp, U. Albrecht, B. Zheng, and I. Tobler, “Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice,” European Journal of Neuroscience, vol. 16, no. 6, pp. 1099–1106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Franken, R. Thomason, H. C. Craig, and B. F. O'Hara, “A non-circadian role for clock-genes in sleep homeostasis: a strain comparison,” BMC Neuroscience, vol. 8, article 87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Wisor, B. F. O'Hara, A. Terao et al., “A role of cryptochromes in sleep regulation,” BMC Neuroscience, vol. 3, article 20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zhao and B. Rusak, “Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro,” Neuroscience, vol. 132, no. 2, pp. 519–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Dibner, U. Schibler, and U. Albrecht, “The mammalian circadian timing system: organization and coordination of central and peripheral clocks,” Annual Review of Physiology, vol. 72, pp. 517–549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. J. De Vries, R. M. Buds, and D. F. Swaab, “Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain-presence of a sex difference in the lateral septum,” Brain Research, vol. 218, no. 1-2, pp. 67–78, 1981. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Guilding, A. T. L. Hughes, and H. D. Piggins, “Circadian oscillators in the epithalamus,” Neuroscience, vol. 169, no. 4, pp. 1630–1639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Goldstein, “A gabaergic habenulo-raphe pathway mediation of the hypnogenic effects of vasotocin in cat,” Neuroscience, vol. 10, no. 3, pp. 941–945, 1983. View at Publisher · View at Google Scholar · View at Scopus
  24. Z.-L. Huang, W.-M. Qu, N. Eguchi et al., “Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine,” Nature Neuroscience, vol. 8, no. 7, pp. 858–859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. K. H. Andres, M. von Düring, and R. W. Veh, “Subnuclear organization of the rat habenular complexes,” Journal of Comparative Neurology, vol. 407, no. 1, pp. 130–150, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Friedman, B. M. Bergmann, and A. Rechtschaffen, “Effects of sleep deprivation on sleepiness, sleep intensity, and subsequent sleep in the rat,” Sleep, vol. 1, no. 4, pp. 369–391, 1979. View at Google Scholar · View at Scopus
  27. A. B. Kowski, S. Geisler, M. Krauss, and R. W. Veh, “Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat,” Journal of Comparative Neurology, vol. 507, no. 4, pp. 1465–1478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. Pasquier, C. Anderson, W. B. Forbes, and P. J. Morgane, “Horseradish peroxidase tracing of the lateral habenular-midbrain raphe nuclei connections in the rat,” Brain Research Bulletin, vol. 1, no. 5, pp. 443–451, 1976. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Guglielmotti and L. Cristino, “The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry,” Brain Research Bulletin, vol. 69, no. 5, pp. 475–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. W. A. Staines, T. Yamamoto, K. M. Dewar, P. E. Daddona, J. D. Geiger, and J. I. Nagy, “Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat,” Brain Research, vol. 455, no. 1, pp. 72–87, 1988. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Lacoste, D. Angeloni, S. Dominguez-Lopez et al., “Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain,” Journal of Pineal Research, vol. 58, no. 4, pp. 397–417, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. L.-M. Yang, B. Hu, Y.-H. Xia, B.-L. Zhang, and H. Zhao, “Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus,” Behavioural Brain Research, vol. 188, no. 1, pp. 84–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. C. Skeldon, G. Derks, and D.-J. Dijk, “Modelling changes in sleep timing and duration across the lifespan: changes in circadian rhythmicity or sleep homeostasis?” Sleep Medicine Reviews, vol. 28, pp. 92–103, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. P. L. Lowrey and J. S. Takahashi, “Mammalian circadian biology: elucidating genome-wide levels of temporal organization,” Annual Review of Genomics and Human Genetics, vol. 5, pp. 407–441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Franken and D.-J. Dijk, “Circadian clock genes and sleep homeostasis,” European Journal of Neuroscience, vol. 29, no. 9, pp. 1820–1829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Shen, X. Ruan, and H. Zhao, “Stimulation of midbrain dopaminergic structures modifies firing rates of rat lateral habenula neurons,” PLoS ONE, vol. 7, no. 4, article e34323, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. L.-M. Yang, L. Yu, H.-J. Jin, and H. Zhao, “Substance P receptor antagonist in lateral habenula improves rat depression-like behavior,” Brain Research Bulletin, vol. 100, pp. 22–28, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. X. F. Luo, B. L. Zhang, J. C. Li, Y. Y. Yang, Y. F. Sun, and H. Zhao, “Lateral habenula as a link between dopaminergic and serotonergic systems contributes to depressive symptoms in Parkinson's disease,” Brain Research Bulletin, vol. 110, pp. 40–46, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Han, H. J. Jin, M. Y. Song, T. Wang, and H. Zhao, “A potential target for the treatment of Parkinson's disease: effect of lateral habenula lesions,” Parkinsonism & Related Disorders, vol. 20, no. 11, pp. 1191–1195, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Zhao, H. Xu, Y. Liu, L. Mu, J. Xiao, and H. Zhao, “Diurnal expression of the per2 gene and protein in the lateral habenular nucleus,” International Journal of Molecular Sciences, vol. 16, no. 8, pp. 16740–16749, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Curie, S. Maret, Y. Emmenegger, and P. Franken, “In Vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice,” Sleep, vol. 38, no. 9, pp. 1381–1394, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. W.-G. Jiang, S.-X. Li, S.-J. Zhou, Y. Sun, J. Shi, and L. Lu, “Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus,” Brain Research, vol. 1399, pp. 25–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. Mirrione, D. Schulz, K. A. B. Lapidus, S. Zhang, W. Goodman, and F. A. Henn, “Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior,” Frontiers in Human Neuroscience, vol. 8, no. 1, article 29, 2014. View at Publisher · View at Google Scholar · View at Scopus