Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 268504, 2 pages

Biochemical Pathways in Cancer

1Department of Radiation Oncology, Loyola University Chicago, Maywood, IL 60153, USA
2Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
3Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40506, USA

Received 23 October 2012; Accepted 23 October 2012

Copyright © 2012 Eun-Kyoung Yim Breuer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Zuckerman, K. Wolyniec, R. V. Sionov, S. Haupt, and Y. Haupt, “Tumour suppression by p53: the importance of apoptosis and cellular senescence,” Journal of Pathology, vol. 219, no. 1, pp. 3–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Chen, D. Chang, M. Goh, S. A. Klibanov, and M. Ljungman, “Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors,” Cell Growth and Differentiation, vol. 11, no. 5, pp. 239–246, 2000. View at Google Scholar · View at Scopus
  3. L. A. Garraway, H. R. Widlund, M. A. Rubin et al., “Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma,” Nature, vol. 436, no. 7047, pp. 117–122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. J. De Souza, B. Stransky, and A. A. Camargo, “Insights into gliomagenesis: systems biology unravels key pathways,” Genome Medicine, vol. 1, no. 10, Article ID gm101, 2009. View at Publisher · View at Google Scholar · View at Scopus