Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 436981, 5 pages
http://dx.doi.org/10.1155/2012/436981
Review Article

Oxygen versus Reactive Oxygen in the Regulation of HIF-1 : The Balance Tips

Department of Biochemistry, National University of Singapore, Singapore 117596

Received 7 August 2012; Revised 14 September 2012; Accepted 15 September 2012

Academic Editor: Vladimir Uversky

Copyright © 2012 Thilo Hagen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. L. Semenza and G. L. Wang, “A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation,” Molecular and Cellular Biology, vol. 12, no. 12, pp. 5447–5454, 1992. View at Google Scholar · View at Scopus
  2. N. S. Chandel, E. Maltepe, E. Goldwasser, C. E. Mathieu, M. C. Simon, and P. T. Schumacker, “Mitochondrial reactive oxygen species trigger hypoxia-induced transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11715–11720, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. N. S. Chandel, D. S. McClintock, C. E. Feliciano et al., “Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing,” The Journal of Biological Chemistry, vol. 275, no. 33, pp. 25130–25138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Jaakkola, D. R. Mole, Y. M. Tian et al., “Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation,” Science, vol. 292, no. 5516, pp. 468–472, 2001. View at Google Scholar · View at Scopus
  5. M. Ivan, K. Kondo, H. Yang et al., “HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing,” Science, vol. 292, no. 5516, pp. 464–468, 2001. View at Google Scholar · View at Scopus
  6. A. C. R. Epstein, J. M. Gleadle, L. A. McNeill et al., “C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation,” Cell, vol. 107, no. 1, pp. 43–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. K. Bruick and S. L. McKnight, “A conserved family of prolyl-4-hydroxylases that modify HIF,” Science, vol. 294, no. 5545, pp. 1337–1340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. K. Brunelle, E. L. Bell, N. M. Quesada et al., “Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation,” Cell Metabolism, vol. 1, no. 6, pp. 409–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. D. Guzy, B. Hoyos, E. Robin et al., “Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing,” Cell Metabolism, vol. 1, no. 6, pp. 401–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. D. Mansfield, R. D. Guzy, Y. Pan et al., “Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation,” Cell Metabolism, vol. 1, no. 6, pp. 393–399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. E. L. Bell, T. A. Klimova, J. Eisenbart et al., “The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production,” Journal of Cell Biology, vol. 177, no. 6, pp. 1029–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Hagen, C. T. Taylor, F. Lam, and S. Moncada, “Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α,” Science, vol. 302, no. 5652, pp. 1975–1978, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Doege, S. Heine, I. Jensen, W. Jelkmann, and E. Metzen, “Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact,” Blood, vol. 106, no. 7, pp. 2311–2317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Wenger, “Mitochondria: oxygen sinks rather than sensors?” Medical Hypotheses, vol. 66, no. 2, pp. 380–383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. L. Chua, E. Dufour, E. P. Dassa et al., “Stabilization of hypoxia-inducible factor-1α protein in hypoxia occurs independently of mitochondrial reactive oxygen species production,” The Journal of Biological Chemistry, vol. 285, no. 41, pp. 31277–31284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. T. Brown and C. A. Nurse, “Induction of HIF-2α is dependent on mitochondrial O2 consumption in an O2-sensitive adrenomedullary chromaffin cell line,” American Journal of Physiology, vol. 294, no. 6, pp. C1305–C1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Naranjo-Suarez, B. A. Carlson, P. A. Tsuji, M. H. Yoo, V. N. Gladyshev, and D. L. Hatfield, “HIF-independent regulation of thioredoxin reductase 1 contributes to the high levels of reactive oxygen species induced by hypoxia,” PLoS ONE, vol. 7, no. 2, Article ID e30470, 2012. View at Publisher · View at Google Scholar
  18. N. Masson, R. S. Singleton, R. Sekirnik et al., “The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity,” EMBO Reports, vol. 13, no. 3, pp. 251–257, 2012. View at Publisher · View at Google Scholar
  19. R. B. Hamanaka and N. S. Chandel, “Mitochondrial reactive oxygen species regulate hypoxic signaling,” Current Opinion in Cell Biology, vol. 21, no. 6, pp. 894–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Hoffman, J. D. Salter, and P. S. Brookes, “Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling,” American Journal of Physiology, vol. 292, no. 1, pp. H101–H108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. L. Hoffman and P. S. Brookes, “Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions,” The Journal of Biological Chemistry, vol. 284, no. 24, pp. 16236–16245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. B. Waypa, J. D. Marks, R. Guzy et al., “Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells,” Circulation Research, vol. 106, no. 3, pp. 526–535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. E. L. Bell, T. A. Klimova, J. Eisenbart, P. T. Schumacker, and N. S. Chandel, “Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia,” Molecular and Cellular Biology, vol. 27, no. 16, pp. 5737–5745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Wang, H. Fang, L. Groom et al., “Superoxide flashes in single mitochondria,” Cell, vol. 134, no. 2, pp. 279–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. D. Brand, “The sites and topology of mitochondrial superoxide production,” Experimental Gerontology, vol. 45, no. 7-8, pp. 466–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Li, J. C. Copin, L. F. Reola et al., “Reduced mitochondrial manganese-superoxide dismutase activity exacerbates glutamate toxicity in cultured mouse cortical neurons,” Brain Research, vol. 814, no. 1-2, pp. 164–170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Copin, Y. Gasche, Y. Li, and P. H. Chan, “Prolonged hypoxia during cell development protects mature manganese superoxide dismutase-deficient astrocytes from damage by oxidative stress,” FASEB Journal, vol. 15, no. 2, pp. 525–534, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Gong and F. H. Agani, “Oligomycin inhibits HIF-1α expression in hypoxic tumor cells,” American Journal of Physiology, vol. 288, no. 5, pp. C1023–C1029, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. E. Riby, G. L. Firestone, and L. F. Bjeldanes, “3,3′-Diindolylmethane reduces levels of HIF-1α and HIF-1 activity in hypoxic cultured human cancer cells,” Biochemical Pharmacology, vol. 75, no. 9, pp. 1858–1867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Yang, O. Staples, L. W. Thomas et al., “Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression,” The Journal of Clinical Investigation, vol. 22, no. 2, pp. 600–611, 2012. View at Publisher · View at Google Scholar
  31. K. Tokatlidis, “A disulfide relay system in mitochondria,” Cell, vol. 121, no. 7, pp. 965–967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. F. Kelso, C. M. Porteous, C. V. Coulter et al., “Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 4588–4596, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Pan, K. D. Mansfield, C. C. Bertozzi et al., “Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro,” Molecular and Cellular Biology, vol. 27, no. 3, pp. 912–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Niethammer, H. Y. Kueh, and T. J. Mitchison, “Spatial patterning of metabolism by mitochondria, oxygen, and energy sinks in a model cytoplasm,” Current Biology, vol. 18, no. 8, pp. 586–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. V. Zhdanov, V. I. Ogurtsov, C. T. Taylor, and D. B. Papkovsky, “Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique,” Integrative Biology, vol. 2, no. 9, pp. 443–451, 2010. View at Publisher · View at Google Scholar · View at Scopus