Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 480529, 7 pages
http://dx.doi.org/10.1155/2012/480529
Research Article

Increased Urine IgM and IgG2 Levels, Indicating Decreased Glomerular Size Selectivity, Are Not Affected by Dalteparin Therapy in Patients with Type 2 Diabetes

1Department of Nephrology, Institution of Clinical Sciences, Lund University Hospital, 22185 Lund, Sweden
2Primary Care Unit, Capio-Citykliniken, Björkhemsvägen 15C, 29154 Kristianstad, Sweden
3Department of Cardiology, Danderyd Hospital, 18288 Stockholm, Sweden
4Department of Endocrinology, Malmö University Hospital, 20502 Malmö, Sweden
5Diabetes Centrum, Sahlgrenska University Hospital, 41345 Göteborg, Sweden
6Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, 41345 Göteborg, Sweden
7Department of Endocrinology, Karolinska University Hospital, 17164 Solna, Sweden
8Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 18288 Stockholm, Sweden

Received 29 August 2011; Revised 8 November 2011; Accepted 22 November 2011

Academic Editor: Barbara Bartolini

Copyright © 2012 Ole Torffvit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Deckert, B. Feldt-Rasmussen, K. Borch-Johnsen, T. Jensen, and A. Kofoed-Enevoldsen, “Albuminuria reflects widespread vascular damage. The steno hypothesis,” Diabetologia, vol. 32, no. 4, pp. 219–226, 1989. View at Publisher · View at Google Scholar
  2. A. Kofoed-Enevoldsen, D. Noonan, and T. Deckert, “Diabetes mellitus induced inhibition of glucosaminyl N-deacetylase: effect of short-term blood glucose control in diabetic rats,” Diabetologia, vol. 36, no. 4, pp. 310–315, 1993. View at Publisher · View at Google Scholar
  3. G. Gambaro and F. J. Van Der Woude, “Glycosaminoglycans: use in treatment of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 11, pp. 359–368, 2000. View at Google Scholar
  4. J. T. Tamsma, J. Van Den Born, J. A. Bruijn et al., “Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane,” Diabetologia, vol. 37, no. 3, pp. 313–320, 1994. View at Publisher · View at Google Scholar
  5. N. P. Goode, M. Shires, D. M. Crellin, S. R. Aparicio, and A. M. Davison, “Alterations of glomerular basement membrane charge and structure in diabetic nephropathy,” Diabetologia, vol. 38, no. 12, pp. 1455–1465, 1995. View at Publisher · View at Google Scholar
  6. P. S. Oturai, R. Rasch, E. Hasselager et al., “Effects of heparin and aminoguanidine on glomerular basement membrane thickening in diabetic rats,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 104, no. 4, pp. 259–264, 1996. View at Publisher · View at Google Scholar
  7. S. M. Marshall, K. W. Hansen, R. Østerby, J. Frystyk, H. Ørskov, and A. Flyvbjerg, “Effects of heparin on renal morphology and albuminuria in experimental diabetes,” American Journal of Physiology, vol. 271, no. 2, pp. E326–E332, 1996. View at Google Scholar
  8. I. Ichikawa, Y. Yoshida, A. Fogo, M. L. Purkerson, and S. Klahr, “Effect of heparin on the glomerular structure and function of remnant nephrons,” Kidney International, vol. 34, no. 5, pp. 638–644, 1988. View at Publisher · View at Google Scholar
  9. B. Myrup, P. M. Hansen, T. Jensen et al., “Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus,” The Lancet, vol. 345, no. 8947, pp. 421–422, 1995. View at Publisher · View at Google Scholar
  10. J. T. Tamsma, F. J. Van Der Woude, and H. H. P. J. Lemkes, “Effect of sulphated glycosaminoglycans on albuminuria in patients with overt diabetic (type 1) nephropathy,” Nephrology Dialysis Transplantation, vol. 11, no. 1, pp. 182–185, 1996. View at Google Scholar
  11. S. Nielsen, A. Schmitz, T. Bacher, M. Rehling, J. Ingerslev, and C. E. Mogensen, “Transcapillary escape rate and albuminuria in type II diabetes. Effects of short-term treatment with low-molecular weight heparin,” Diabetologia, vol. 42, no. 1, pp. 60–67, 1999. View at Publisher · View at Google Scholar
  12. M. Kalani, J. Apelqvist, M. Blombäck et al., “Effect of dalteparin on healing of chronic fott ulcers in diabetic patients with peripheral arterial occlusive disease: a prospective, randomised, double-blind and placebo-controlled study,” Diabetes Care, vol. 26, no. 9, pp. 2575–2580, 2003. View at Publisher · View at Google Scholar
  13. M. Kalani, A. Silveira, J. Apelqvist et al., “Beneficial effects of dalteparin on haemostatic function and local tissue oxygenation in patients with diabetes, severe vascular disease and foot ulcers,” Thrombosis Research, vol. 120, no. 5, pp. 653–661, 2007. View at Publisher · View at Google Scholar
  14. Y. Chiba, N. Tani, M. Yamazaki, H. Nakamura, S. Ito, and A. Shibata, “Glomerular charge selectivity in non-insulin-dependent diabetes mellitus,” Journal of Diabetes and Its Complications, vol. 5, no. 2-3, pp. 135–137, 1991. View at Google Scholar
  15. S. Morano, P. Pietravalle, M. G. De Rossi et al., “A charge selectivity impairment in protein permselectivity is present in type 2 diabetes,” Acta Diabetologica, vol. 30, no. 3, pp. 138–142, 1993. View at Publisher · View at Google Scholar
  16. M. A. Gall, A. Kofoed-Enevoldsen, F. S. Nielsen, and H. H. Parving, “Glomerular size- and charge selectivity in type 2 (non-insulin-dependent) diabetic patients with diabetic nephropathy,” Diabetologia, vol. 37, no. 2, pp. 195–201, 1994. View at Publisher · View at Google Scholar
  17. K. Yoshioka, S. Tanaka, M. Imanishi et al., “Glomerular charge and size selectivity assessed by changes in salt intake in type 2 diabetic patients,” Diabetes Care, vol. 21, no. 4, pp. 482–486, 1998. View at Publisher · View at Google Scholar
  18. K. Sharma, F. Ziayadeh, B. Alzahabi et al., “Increased renal production of transforming growth factor-ß1 in patients with type II diabetes,” Diabetes/Metabolism Reviews, vol. 46, no. 5, pp. 854–859, 1997. View at Google Scholar
  19. R. Stephens, P. McElduff, A. Heald et al., “Polymorphisms in IGF-binding protein 1 are associated with impaired renal function in type 2 diabetes,” Diabetes/Metabolism Reviews, vol. 54, no. 12, pp. 3547–3553, 2005. View at Google Scholar
  20. M. Akturk, M. Arslan, A. Altinova et al., “Association of serum levels of IGF-I and IGFBP-1 with renal function in patients with type 2 diabetes mellitus,” Growth Hormone & IGF Research, vol. 17, no. 3, pp. 186–193, 2007. View at Publisher · View at Google Scholar
  21. T. Vasylyeva and R. J. Ferry Jr., “Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy,” Diabetes Research and Clinical Practice, vol. 76, no. 2, pp. 177–186, 2007. View at Publisher · View at Google Scholar
  22. O. Torffvit and J. Wieslander, “A simplified enzyme-linked immunosorbent assay for urinary albumin,” Scandinavian Journal of Clinical & Laboratory Investigation, vol. 46, no. 6, pp. 545–548, 1986. View at Google Scholar
  23. J. Tencer, O. Torffvit, A. Grubb, S. Björnsson, H. Thysell, and B. Rippe, “Decreased excretion of urine glycosaminoglycans as marker in renal amyloidosis,” Nephrology Dialysis Transplantation, vol. 12, no. 6, pp. 1161–1166, 1997. View at Publisher · View at Google Scholar
  24. J. Tencer, O. Torffvit, H. Thysell, B. Rippe, and A. Grubb, “Proteinuria selectivity index based upon α2-macroglobulin or IgM is superior to the IgG based index in differentiating glomerular diseases,” Kidney International, vol. 54, no. 6, pp. 2098–2105, 1998. View at Publisher · View at Google Scholar
  25. O. Torffvit and B. Rippe, “Size and charge selectivity of the glomerular filter in patients with insulin-dependent diabetes mellitus: urinary immunoglobulins and glycosaminoglycans,” Nephron, vol. 83, no. 4, pp. 301–307, 1999. View at Publisher · View at Google Scholar
  26. P. Bang, U. Eriksson, V. Sara, I. Wivall, and K. Hall, “Comparison of acid ethanol extraction and acid gel filtration prior to IGF-I and IGF-II radioimmunoassays: improvement of determinations in acid ethanol extracts by the use of truncated IGF-I as radioligand,” Acta Endocrinologica (Copenhagen), vol. 124, no. 6, pp. 620–629, 1991. View at Google Scholar
  27. G. Póva, A. Roovete, and K. Hall, “Crossreaction of serum somatomedin-binding protein in a radioimmunoassay developed for somatomedin binding protein isolated from human amniotic fluid,” Acta Endocrinologica (Copenhagen), vol. 107, no. 4, pp. 563–570, 1984. View at Google Scholar
  28. O. Bakoush, J. Tencer, J. Tapia, B. Rippe, and O. Torffvit, “Higher urinary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy,” Kidney International, vol. 61, pp. 203–208, 2002. View at Publisher · View at Google Scholar
  29. A.-L. Undén, S. Elofsson, and K. Brismar, “Gender differences in the relation of insulin-like growth factor binding protein-1 to cardiovascular risk factors: a population-based study,” Clinical Endocrinology, vol. 63, no. 1, pp. 94–102, 2005. View at Publisher · View at Google Scholar
  30. A.-L. Undén, S. Elofsson, S. Knox, M. Lewitt, and K. Brismar, “IGF-I in a normal population: relation to psychosocial factors,” Clinical Endocrinology, vol. 57, no. 6, pp. 793–803, 2002. View at Publisher · View at Google Scholar
  31. J. Van der Pijl, F. van der Woude, P. Geelhoed-Duijvestijn et al., “Danaparoid sodium lowers proteinuria in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 8, no. 3, pp. 456–462, 1997. View at Google Scholar
  32. G. Gambaro, I. Kinalska, A. Oksa et al., “Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial,” Journal of the American Society of Nephrology, vol. 13, no. 6, pp. 1615–1625, 2002. View at Publisher · View at Google Scholar
  33. E. Lewis, J. Lewis, T. Greene et al., “Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial,” American Journal of Kidney Diseases, vol. 58, no. 5, pp. 729–736, 2011. View at Publisher · View at Google Scholar
  34. J. Dawes, C. Prowse, and D. S. Pepper, “Absorption of heparin, LMW heparin and SP54 after subcutaneous injection, assessed by competitive binding assay,” Thrombosis Research, vol. 44, no. 5, pp. 683–693, 1986. View at Publisher · View at Google Scholar
  35. K. Chaudhary, G. Phadke, R. Nivastala, C. Weidmeyer, S. McFarlane, and A. Whaley-Connell, “The emerging role of biomarkers in diabetic and hypertensive chronic kidney disease,” Current Diabetes Reports, vol. 10, no. 1, pp. 37–42, 2010. View at Publisher · View at Google Scholar
  36. F. Nauta, W. van Oeveren, W. Boertien et al., “Glomerular and tubular damage markers are elevated in patients with diabetes,” Diabetes Care, vol. 34, no. 4, pp. 975–981, 2011. View at Publisher · View at Google Scholar
  37. W.-J. Fu, S.-L. Xiong, Y.-G. Fang et al., “Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study,” Endocrine Journal, vol. 41, no. 1, pp. 82–88, 2012. View at Publisher · View at Google Scholar
  38. G. Tramonti and Y. S. Kanwar, “Tubular biomarkers to assess progression of diabetic nephropathy,” Kidney International, vol. 79, no. 10, pp. 1042–1044, 2011. View at Publisher · View at Google Scholar
  39. S. Nielsen, S. Andersen, D. Zdunek, G. Hess, H.-H. Parving, and P. Rossing, “Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy,” Kidney International, vol. 79, no. 10, pp. 1113–1118, 2011. View at Publisher · View at Google Scholar
  40. O. Bakoush, O. Torffvit, B. Rippe, and J. Tencer, “High proteinuria selectivity index based upon IgM is a strong predictor of poor renal survival in glomerular diseases,” Nephrology Dialysis Transplantation, vol. 16, no. 7, pp. 1357–1363, 2001. View at Publisher · View at Google Scholar