Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 583170, 7 pages
http://dx.doi.org/10.1155/2012/583170
Review Article

The Myocardial Unfolded Protein Response during Ischemic Cardiovascular Disease

Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 300 East Superior Street, Tarry Building 3-705, Chicago, IL 60611, USA

Received 6 December 2011; Accepted 10 January 2012

Academic Editor: Huiping Zhou

Copyright © 2012 Edward B. Thorp. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. V. McMurray and M. A. Pfeffer, “Heart failure,” The Lancet, vol. 365, no. 9474, pp. 1877–1889, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Ezekowitz and P. Kaul, “The epidemiology and management of elderly patients with myocardial infarction or heart failure,” Heart Failure Reviews, vol. 15, no. 5, pp. 407–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation, vol. 123, pp. e18–e209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. S. Y. Foo, K. Mani, and R. N. Kitsis, “Death begets failure in the heart,” Journal of Clinical Investigation, vol. 115, no. 3, pp. 565–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Abbate, G. G. L. Biondi-Zoccai, R. Bussani et al., “Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure,” Journal of the American College of Cardiology, vol. 41, no. 5, pp. 753–760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. G. W. Dorn, “Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling,” Cardiovascular Research, vol. 81, no. 3, pp. 465–473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Martinet, M. W. M. Knaapen, M. M. Kockx, and G. R. Y. De Meyer, “Autophagy in cardiovascular disease,” Trends in Molecular Medicine, vol. 13, no. 11, pp. 482–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. S. Hossain, J. V. van Thienen, G. H. Werstuck et al., “TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia,” The Journal of Biological Chemistry, vol. 278, no. 32, pp. 30317–30327, 2003. View at Google Scholar
  10. Y. Ma and L. M. Hendershot, “The unfolding tale of the unfolded protein response,” Cell, vol. 107, no. 7, pp. 827–830, 2001. View at Google Scholar
  11. J. S. Cox, C. E. Shamu, and P. Walter, “Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase,” Cell, vol. 73, no. 6, pp. 1197–1206, 1993. View at Google Scholar
  12. H. Yoshida, K. Haze, H. Yanagi, T. Yura, and K. Mori, “Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors,” The Journal of Biological Chemistry, vol. 273, no. 50, pp. 33741–33749, 1998. View at Google Scholar
  13. H. P. Harding, Y. Zhang, and D. Ron, “Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase,” Nature, vol. 397, no. 6716, pp. 271–274, 1999. View at Google Scholar
  14. R. Friedlander, E. Jarosch, J. Urban, C. Volkwein, and T. Sommer, “A regulatory link between ER-associated protein degradation and the unfolded-protein response,” Nature Cell Biology, vol. 2, no. 7, pp. 379–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. K. J. Travers, C. K. Patil, L. Wodicka, D. J. Lockhart, J. S. Weissman, and P. Walter, “Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation,” Cell, vol. 101, no. 3, pp. 249–258, 2000. View at Google Scholar · View at Scopus
  16. H. P. Harding, Y. Zhang, A. Bertolotti, H. Zeng, and D. Ron, “Perk is essential for translational regulation and cell survival during the unfolded protein response,” Molecular Cell, vol. 5, no. 5, pp. 897–904, 2000. View at Google Scholar
  17. P. I. Merksamer, A. Trusina, and F. R. Papa, “Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions,” Cell, vol. 135, no. 5, pp. 933–947, 2008. View at Google Scholar
  18. I. Tabas and D. Ron, “Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress,” Nature Cell Biology, vol. 13, no. 3, pp. 184–190, 2011. View at Publisher · View at Google Scholar
  19. B. J. Maron, V. J. Ferrans, and W. C. Roberts, “Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy,” American Journal of Pathology, vol. 79, no. 3, pp. 387–434, 1975. View at Google Scholar · View at Scopus
  20. P. Volpe, A. Villa, P. Podini et al., “The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 6142–6146, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. S. E. Cala, C. Ulbright, J. S. Kelley, and L. R. Jones, “Purification of a 90-kDa protein (band VII) from cardiac sarcoplasmic reticulum. Identification as calnexin and localization of casein kinase II phosphorylation sites,” Journal of Biological Chemistry, vol. 268, no. 4, pp. 2969–2975, 1993. View at Google Scholar · View at Scopus
  22. J. A. Barnes and I. W. Smoak, “Immunolocalization and heart levels of GRP94 in the mouse during post-implantation development,” Anatomy and Embryology, vol. 196, no. 4, pp. 335–341, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Hamada, M. Suzuki, S. Yuasa et al., “Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice,” Molecular and Cellular Biology, vol. 24, no. 18, pp. 8007–8017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. S. Pattison, A. Sanbe, A. Maloyan, H. Osinska, R. Klevitsky, and J. Robbins, “Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure,” Circulation, vol. 117, no. 21, pp. 2743–2751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Wang, H. Osinska, R. Klevitsky et al., “Expression of R120G-αB-crystallin causes aberrant desmin and αB-crystallin aggregation and cardiomyopathy in mice,” Circulation Research, vol. 89, no. 1, pp. 84–91, 2001. View at Google Scholar · View at Scopus
  26. J. G. Dickhout, R. E. Carlisle, and R. C. Austin, “Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis,” Circulation Research, vol. 108, no. 5, pp. 629–642, 2011. View at Publisher · View at Google Scholar
  27. N. Mesaeli, K. Nakamura, M. Opas, and M. Michalak, “Endoplasmic reticulum in the heart, a forgotten organelle?” Molecular and Cellular Biochemistry, vol. 225, no. 1-2, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Michalak and M. Opas, “Endoplasmic and sarcoplasmic reticulum in the heart,” Trends in Cell Biology, vol. 19, no. 6, pp. 253–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Azfer, J. Niu, L. M. Rogers, F. M. Adamski, and P. E. Kolattukudy, “Activation of endoplasmic reticulum stress response during the development of ischemic heart disease,” American Journal of Physiology, vol. 291, no. 3, pp. H1411–H1420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. B. E. Sobel, “Salient biochemical features in ischemic myocardium,” Circulation Research, vol. 35, no. 3, pp. 173–181, 1974. View at Google Scholar · View at Scopus
  31. R. M. Graham, D. P. Frazier, J. W. Thompson et al., “A unique pathway of cardiac myocyte death caused by hypoxia-acidosis,” Journal of Experimental Biology, vol. 207, no. 18, pp. 3189–3200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Iwai, K. Tanonaka, R. Inoue, S. Kasahara, N. Kamo, and S. Takeo, “Mitochondrial damage during ischemia determines post-ischemic contractile dysfunction in perfused rat heart,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 7, pp. 725–738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Shimizu and L. M. Hendershot, “Oxidative folding: cellular strategies for dealing with the resultant equimolar production of reactive oxygen species,” Antioxidants and Redox Signaling, vol. 11, no. 9, pp. 2317–2331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Martindale, R. Fernandez, D. Thuerauf et al., “Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6,” Circulation Research, vol. 98, no. 9, pp. 1186–1193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Schröder and R. J. Kaufman, “The mammalian unfolded protein response,” Annual Review of Biochemistry, vol. 74, pp. 739–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Sidrauski and P. Walter, “The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response,” Cell, vol. 90, no. 6, pp. 1031–1039, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Calfon, H. Zeng, F. Urano et al., “IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA,” Nature, vol. 415, no. 6867, pp. 92–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Masaki, M. Yoshida, and S. Noguchi, “Targeted disruption of CRE-Binding factor TREB5 gene leads to cellular necrosis in cardiac myocytes at the embryonic stage,” Biochemical and Biophysical Research Communications, vol. 261, no. 2, pp. 350–356, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. C. W. Younce and P. E. Kolattukudy, “MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP,” Biochemical Journal, vol. 426, no. 1, pp. 43–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. J. Thuerauf, M. Marcinko, N. Gude, M. Rubio, M. A. Sussman, and C. C. Glembotski, “Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes,” Circulation Research, vol. 99, no. 3, pp. 275–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Qi, A. Vallentin, E. Churchill, and D. Mochly-Rosen, “δPKC participates in the endoplasmic reticulum stress-induced response in cultured cardiac myocytes and ischemic heart,” Journal of Molecular and Cellular Cardiology, vol. 43, no. 4, pp. 420–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Szegezdi, A. Duffy, M. E. O'Mahoney et al., “ER stress contributes to ischemia-induced cardiomyocyte apoptosis,” Biochemical and Biophysical Research Communications, vol. 349, no. 4, pp. 1406–1411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Urano, X. Wang, A. Bertolotti et al., “Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1,” Science, vol. 287, no. 5453, pp. 664–666, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Dally, V. Monceau, E. Corvazier et al., “Compartmentalized expression of three novel sarco/endoplasmic reticulum Ca2+ATPase 3 isoforms including the switch to ER stress, SERCA3f, in non-failing and failing human heart,” Cell Calcium, vol. 45, no. 2, pp. 144–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Vitadello, D. Penzo, V. Petronilli et al., “Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia,” The FASEB Journal, vol. 17, no. 8, pp. 923–925, 2003. View at Google Scholar · View at Scopus
  46. H. Toko, H. Takahashi, Y. Kayama et al., “ATF6 is important under both pathological and physiological states in the heart,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 1, pp. 113–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Doroudgar, D. J. Thuerauf, M. C. Marcinko, P. J. Belmont, and C. C. Glembotski, “Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response,” Journal of Biological Chemistry, vol. 284, no. 43, pp. 29735–29745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. P. J. Belmont, W. J. Chen, M. N. San Pedro et al., “Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene derlin-3 in the ischemic heart,” Circulation Research, vol. 106, no. 2, pp. 307–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. P. J. Belmont, A. Tadimalla, W. J. Chen et al., “Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene,” Journal of Biological Chemistry, vol. 283, no. 20, pp. 14012–14021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. C. Glembotski, “The role of the unfolded protein response in the heart,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 3, pp. 453–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. K. I. Okada, T. Minamino, Y. Tsukamoto et al., “Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis,” Circulation, vol. 110, no. 6, pp. 705–712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Y. Fu, K. I. Okada, Y. Liao et al., “Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload,” Circulation, vol. 122, no. 4, pp. 361–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Bruhat, C. Jousse, V. Carraro, A. M. Reimold, M. Ferrara, and P. Fafournoux, “Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter,” Molecular and Cellular Biology, vol. 20, no. 19, pp. 7192–7204, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. J. H. Choi, H. K. Cho, Y. H. Choi, and J. H. Cheong, “Activating transcription factor 2 increases transactivation and protein stability of hypoxia-inducible factor 1α in hepatocytes,” Biochemical Journal, vol. 424, no. 2, pp. 285–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Isodono, T. Takahashi, H. Imoto et al., “PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes,” PloS One, vol. 5, no. 3, article e9746, 2010. View at Google Scholar
  56. Y. Miyazaki, K. Kaikita, M. Endo et al., “C/EBP homologous protein deficiency attenuates myocardial reperfusion injury by inhibiting myocardial apoptosis and inflammation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 5, pp. 1124–1132, 2011. View at Google Scholar
  57. H. Y. Fu, T. Minamino, O. Tsukamoto et al., “Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition,” Cardiovascular Research, vol. 79, no. 4, pp. 600–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. P. L. Zhang, M. Lun, J. Teng et al., “Preinduced molecular chaperones in the endoplasmic reticulum protect cardiomyocytes from lethal injury,” Annals of Clinical and Laboratory Science, vol. 34, no. 4, pp. 449–457, 2004. View at Google Scholar · View at Scopus
  59. E. Erbay, V. R. Babaev, J. R. Mayers et al., “Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis,” Nature Medicine, vol. 15, no. 12, pp. 1383–1391, 2009. View at Publisher · View at Google Scholar · View at Scopus